

CARACTERISATION DE L'ALEA SUBMERSION MARINE D'ORIGINE CYCLONIQUE VIA LES DONNEES LIDAR A TAHITI, MOOREA ET BORA BORA

Phase 1 — Etat des lieux

V1 – Juin 2021

Mandataire BRL Ingénierie	BRL ingénierie 1105 Av Pierre Mendès-France BP 94001 30001 NIMES CEDEX 5 France
Sous-traitant 1 GlobOcean	GlobOcéan 45 Avenue de la 1ère Armée 83300 Draguignan France
Sous-traitant 2 SARL PAE TAI PAE UTA	Sarl Pae Tai Pae Uta BP 1 746, 98 713 Papeete Tahiti - Polynésie

Date du document	
Contact	François CARNUS : francois.carnus@brl.fr / +33 4 66 87 52 87 Ludovie LE COZ : ludovie.lecoz@brl.fr / +33 4 66 87 81 87

Titre du document	CARACTERISATION DE L'ALEA SUBMERSION MARINE D'ORIGINE CYCLONIQUE VIA LES DONNEES LIDAR A TAHITI, MOOREA ET BORA BORA
Référence du document :	P:\BRLi\Carnus\A00851_Alea_Submersion_Marine_Pacifique\7_Production\1_Phase 1\rapport_phase1_tahiti.docx
Indice :	V0

Date émission	Indice	Observation	Dressé par	Vérifié et Validé par
01/07/2021	V1		LLC	FCA

CARACTERISATION DE L'ALEA SUBMERSION MARINE D'ORIGINE CYCLONIQUE VIA LES DONNEES LIDAR A TAHITI, MOOREA ET BORA BORA

Phase 1 — Etat des lieux

PR	ÉAMB	SULE	9
1	ANA	ALYSE DU CONTEXTE	.10
	1.1 1.2	ZONE D'ETUDE CONTEXTE NATUREL 1.2.1 Géomorphologie 1.2.1.1 Contexte géologique	10 10 . 10 . 10
		1.2.1.2Topographie et bathymétrie1.2.1.3Typologie littorale	. 13 . 14
		1.2.2 Agents météo-océaniques. 1.2.2.1 Climat 1.2.2.2 Marées. 1.2.2.3 Houles. 1.2.2.4 Vent 1.2.2.5 Effets du changement climatique	. 15 . 15 . 16 . 17 . 18 . 19
	1.0	1.2.3 Hydrologie	. 20
	1.3		20 21
	1.4	1.4.1 Le phénomène de submersion marine	. 21 . 22 . 22 . 22 . 24
2	EVÈI	NEMENTS HISTORIQUES	.25
	2.1 2.2	SOURCES DE DONNÉES DISPONIBLES EVENEMENTS CYCLONIQUES ET TEMPETES TROPICALES HISTORIQUES 2.2.1 Evènements historiques marquants 2.2.2 Cyclones récents	25 25 . 26 26
3	ΔΝΔ	VIYSE DES CONDITIONS CYCI ONIQUES	28
Ŭ	3 1	Methanalogie	28
	U. I	3.1.1Cyclones historiques sélectionnés3.1.2Points représentatifs	. 28 . 28

La politique de protection des données personnelles de BRL Ingénierie est accessible sur son site Internet à l'adresse https://brli.brl.fr/donnees-personnelles-102.html

		3.1.3	Définition des paramètres et conventions	
		3.1.4	Mise en place du modèle	
		3.1.5	Reconstitution des cyclones historiques	
		3.1.6	Détermination des conditions extrêmes cycloniques	
			3.1.6.1 Méthode basée sur des cyclones synthétiques	
			3.1.6.2 Méthode basée sur les cyclones historiques	
	3.2	Condit	IONS EXTREMES CYCLONIQUES	34
		321	Données de hase	34
		3.2.2	Mise en œuvre du modèle cyclonique	36
		323	Modèles numériques de génération des vagues	37
		3.2.4	Reconstitution des cyclones historiques	41
		3.2.5	Détermination des conditions cycloniques extrêmes	
			3.2.5.1 Conditions extrêmes issues des vents cycloniques synthétiques	
			3.2.5.2 Conditions extrêmes cycloniques issues des cyclones historiques	
	3.3	Synthe	SE SUR LES CONDITIONS CYCLONIQUES MODELISEES	
4	ALEA	DE RE	FERENCE	51
5	STR/	TEGIE	DE MODELISATION DE L'ALEA SUBMERSION MARINE	53
5	STRA	ATEGIE	DE MODELISATION DE L'ALEA SUBMERSION MARINE	53
5	STRA 5.1	ATEGIE Type di	DE MODELISATION DE L'ALEA SUBMERSION MARINE	53
5	STRA 5.1 5.2	A TEGIE Type di Mailla	DE MODELISATION DE L'ALEA SUBMERSION MARINE E MODELE IGE	53 53 54
5	STRA 5.1 5.2 5.3	ATEGIE Type di Mailla Logici	DE MODELISATION DE L'ALEA SUBMERSION MARINE E MODELE IGE EL	53 53 54 55
5	STRA 5.1 5.2 5.3 5.4	ATEGIE Type di Mailla Logicii Forçad	DE MODELISATION DE L'ALEA SUBMERSION MARINE E MODELE IGE EL GE, CALAGE, TEST DE SENSIBILITE ET CONTROLE	53 53 54 55 58
5	STRA 5.1 5.2 5.3 5.4 NEXES	ATEGIE Type di Mailla Logicii Forçad	DE MODELISATION DE L'ALEA SUBMERSION MARINE E MODELE IGE EL GE, CALAGE, TEST DE SENSIBILITE ET CONTROLE	53 53 54 55 58 59
5 AN	STRA 5.1 5.2 5.3 5.4 NEXES	ATEGIE TYPE DI MAILLA LOGICII FORÇAC	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE	53 53 54 55 58 59
5	STRA 5.1 5.2 5.3 5.4 NEXES Anne:	ATEGIE Type di Mailla Logicii Forçac S Xe 1. Li	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE GE EL GE, CALAGE, TEST DE SENSIBILITE ET CONTROLE ste des cyclones historiques de la Polynésie Française	53 53 54 55 58 59 61
5	STRA 5.1 5.2 5.3 5.4 NEXES Anne: Anne:	ATEGIE TYPE DI MAILLA LOGICII FORÇAC S xe 1. Li xe 2. M	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE GE EL SE, CALAGE, TEST DE SENSIBILITE ET CONTROLE ste des cyclones historiques de la Polynésie Française esures satellitales	53 54 55 58 59 61 64
5	STRA 5.1 5.2 5.3 5.4 NEXES Anne: Anne: Anne:	ATEGIE TYPE DI MAILLA LOGICII FORÇAC S xe 1. Li xe 2. M xe 3. M	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE GE EL SE, CALAGE, TEST DE SENSIBILITE ET CONTROLE ste des cyclones historiques de la Polynésie Française esures satellitales odèle WAVEWATCH III	53 54 55 58 59 61 64 66 66
5 AN	STRA 5.1 5.2 5.3 5.4 NEXES Anne: Anne: Anne: Anne:	ATEGIE TYPE DI MAILLA LOGICII FORÇAC S Xe 1. Li Xe 2. M Xe 3. M Xe 3. M	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE GE EL GE, CALAGE, TEST DE SENSIBILITE ET CONTROLE ste des cyclones historiques de la Polynésie Française esures satellitales odèle WAVEWATCH III odèle SWAN	53 54 55 58 59 61 64 66 68 68 61
5	STRA 5.1 5.2 5.3 5.4 NEXES Anne: Anne: Anne: Anne: Anne:	ATEGIE TYPE DI MAILLA LOGICII FORÇAC S Xe 1. Li Xe 2. M Xe 3. M Xe 3. M Xe 4. M Xe 5. St	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE GE EL SE, CALAGE, TEST DE SENSIBILITE ET CONTROLE ste des cyclones historiques de la Polynésie Française esures satellitales odèle WAVEWATCH III odèle SWAN atistiques extrêmes cycloniques — Méthode des cyclones synthétiques atistiques extrêmes cycloniques — Méthode des cyclones bistoriques	53 54 55 58 59 61 64 64 66 68 70 70
5 AN	STRA 5.1 5.2 5.3 5.4 NEXES Anne: Anne: Anne: Anne: Anne: Anne:	ATEGIE TYPE DI MAILLA LOGICII FORÇAC S	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE GE EL GE SE, CALAGE, TEST DE SENSIBILITE ET CONTROLE ste des cyclones historiques de la Polynésie Française esures satellitales odèle WAVEWATCH III odèle SWAN atistiques extrêmes cycloniques — Méthode des cyclones synthétiques atistiques extrêmes cycloniques — Méthode des cyclones historiques.	53 53 54 55 58 59 61 64 64 66 66 70 72 72
5 AN	STRA 5.1 5.2 5.3 5.4 NEXES Anne: Anne: Anne: Anne: Anne: Anne: Anne: Anne:	ATEGIE TYPE DI MAILLA LOGICII FORÇAC S xe 1. Li xe 2. M xe 3. M xe 3. M xe 4. M xe 5. St xe 6. St xe 6. St xe 7. Ex	DE MODELISATION DE L'ALEA SUBMERSION MARINE MODELE GE EL EL SE, CALAGE, TEST DE SENSIBILITE ET CONTROLE ste des cyclones historiques de la Polynésie Française esures satellitales odèle WAVEWATCH III odèle SWAN atistiques extrêmes cycloniques — Méthode des cyclones synthétiques atistiques extrêmes cycloniques — Méthode des cyclones historiques cemples de champs de vents et vagues cycloniques sting des cyclones historiques — Valeurs maximales de HmQ et Ws atteintes aver	53 535455585961646668707274 points do

TABLE DES ILLUSTRATIONS

LISTE DES FIGURES

Figure 1 : Emprise des données Lidar 2015	10
Figure 2 : Principales unités géologiques de Tahiti	11
Figure 3 : Carte géologique simplifiée de Moorée	12
Figure 4 : Carte géologique schématique de Bora Bora	13
Figure 5 : Organisation d'un lagon	14
Figure 6 : Les trois types de récifs coralliens	15
Figure 7 : Carte des marégraphes de l'archipel de la Société	17
Figure 8 : Rose des vents à Tahiti (vent à 10m, depuis 1985)	18
Figure 9 : Scénarios d'élévation du niveau marin sous l'effet du changement climatique	19
Figure 10 : Différentes contributions au niveau du plan d'eau lors d'une tempête (surcotes) jusqu'au rivage	21
Figure 11 : Fréquences de passage des tempêtes tropicales et des cyclones (par degré de latitude et de longitude) observés entre 1970 et 2009 en Polynésie française	24
Figure 12 : Représentation schématique d'un cyclone de l'hémisphère Nord	23
Figure 13 : Localisation des points d'étude autour de Moorea et Tahiti	30
Figure 14 : Localisation des points d'étude autour de Bora-Bora	30
Figure 15 : Bathymétrie de la grille Locale Bora-Bora	35
Figure 16 : Bathymétrie de la grille Locale Mooréa/Tahiti	35
Figure 17 : Trajectoire et intensité (Echelle Saffir-Simpson) des cyclones historiques sélectionnés	37
Figure 18 : Emprise des grilles de modélisation Globale et Régionale	39
Figure 19 : Emprise des grilles de modélisation Locales de Bora-Bora et de Mooréa/Tahiti	41
Figure 20 : Validation du vent cyclonique paramétrique - Nuage de points - 0 < D < 300 km	42
Figure 21 : Validation du vent cyclonique paramétrique – Q-Q plot – 0 < D < 300 km	42
Figure 22 : Validation du Hm0 – Nuage de points – 0 < D < 300 km	43
Figure 23 : Validation du Hm0 – Q-Q plot – 0 < D < 300 km	43
Figure 24 : IFORM Ws/Distance site d'étude par rapport à la position du cyclone	45
Figure 25 : Evolution normalisée de la vitesse du vent lors des cyclones extrêmes	46
Figure 26 : Exemple de trajectoire cyclonique synthétique	47
Figure 27 : Zone test de la passe de Vaiare à Mooréa	53
Figure 28 : Maillage sur la zone test de Vaiare	54
Figure 29 : Détails du maillage sur la zone test	55
Figure 31 : Exemple de profil XBeach 1DH	57
Figure 30 : Schéma de principe du processus de vagues concerné sur XBeach	58

LISTE DES TABLEAUX

Tableau 1 : Niveaux caractéristique des marées aux stations de Vairao Oututaata (Tahiti), Papetoai (Mooréa) Vaitape (Bora-Bora), en côte marine (CM)	et 16
Tableau 2 : Valeurs d'élévation du niveau marin pour différents horizons, par rapport à l'année 2020	19
Tableau 3 : Coordonnées des points d'étude	29
Tableau 4 : Notations relatives aux états de mer	31
Tableau 5 : Notations relatives au vent	31
Tableau 6 : Modélisation des vagues – Caractéristiques physiques – Domaines #1 et #2	38
Tableau 7 : Modélisation des vagues – Caractéristiques physiques – Grille Locale Bora-Bora	39
Tableau 8 : Modélisation des vagues – Caractéristiques physiques – Grille Locale Moorea/Tahiti	40
Tableau 9 : Valeurs extrêmes cycloniques de vitesse de vent et distance associée (Distance entre le site d'étu et la position du vent maximal dans la structure du cyclone)	ude 44
Tableau 10 : Valeurs extrêmes d'états de mer cycloniques – Méthode cyclones synthétiques	49
Tableau 11 : Valeurs extrêmes d'états de mer cycloniques – Méthode cyclones historiques	50
Tableau 12 : Conditions cycloniques extrêmes, cyclones synthétiques VS historiques	52

PREAMBULE

Le territoire Polynésien est régulièrement touché par des phénomènes de submersions marines dus à des évènements marins extrêmes comme les cyclones et les tempêtes tropicales pouvant occasionner de nombreux dégâts. Afin de mieux gérer les aléas naturels et en particulier la submersion marine, des Plans de Prévention des Risques (PPR) ont été réalisés avec l'aide du BRGM et finalisés en 2006. Ces plans couvrent tout le territoire sauf la commune de Rapa et comprennent une cartographie des aléas avec un zonage de la submersion marine. Depuis, une campagne Lidar a été effectuée en 2015 sur la zone côtière, fournissant des données bathymétriques et topographique de haute résolution mises à disposition par le SHOM en 2016.

Dans ce contexte, le ministère du logement et de l'aménagement du territoire demande une mise à jour du zonage de la submersion marine des cartographies des PPR sur les secteurs couverts par la campagne Lidar. Cette mise à jour devra intégrer les données Lidar mais également les dernières données disponibles sur les cyclones et tempêtes et sur les effets du changement climatique.

L'étude de caractérisation de l'aléa submersion marine d'origine cyclonique via les données Lidar s'organise en trois phases :

- Phase 1 : Etat des lieux sur les cyclones et tempêtes historiques
- Phase 2 : Modélisation de l'impact des cyclones en termes de submersion marine
- Phase 3 : Cartographie de l'aléa submersion marine au 1/5000

Le présent rapport correspond à la phase 1. Il dresse un état des lieux général et présente une analyse des cyclones et des évènements marins extrêmes historiques ainsi que la stratégie de modélisation et l'évènement de référence qui sera utilisé.

1 ANALYSE DU CONTEXTE

1.1 ZONE D'ETUDE

Les trois îles font partie de l'archipel de la Société dont Papeete est le chef-lieu. Bora Bora appartient aux îles Sous le Vent tandis que Mooréa et Tahiti font partie des îles du Vent.

La zone d'étude est définie par l'emprise des données Lidar de 2015. Elle englobe entièrement les côtes des îles de Bora Bora et de Mooréa et la côte Est de Tahiti entre Maraa et Papenoo, elle est présentée Figure 1. L'emprise terrestre est une bande d'au moins 600 m qui englobe toutes les zones basses potentiellement submersibles.

Figure 1 : Emprise des données Lidar 2015

1.2 CONTEXTE NATUREL

1.2.1 Géomorphologie

1.2.1.1 Contexte géologique

Les archipels de la Polynésie, dont l'archipel de la Société, se sont formés par l'activité de points chauds, des remontées de magma venant du manteau terrestre et qui créent un volcan en perçant la croute océanique. Les points chauds sont situés en dessous de la plaque tectonique Pacifique qui se déplace. Les éruptions du point chaud atteignent donc différents endroits de la plaque au cours du temps. ¹

Bora-Bora est située au nord-ouest de Tahiti et est la plus ancienne des trois îles (dans cette région la plaque Pacifique se déplace vers le Nord-Ouest). L'île de Tahiti doit sa physionomie particulière à la juxtaposition de deux systèmes éruptifs distincts, définissant l'île principale de Tahiti-Nui au Nord-Ouest et la presqu'île de Taiarapu au Sud-Est. L'âge de Bora Bora est estimé à 3.3 millions d'années, celui de Moorea à 1,9 Ma et celui de Tahiti à 1.3 Ma (pour le volcan principal).

¹ https://tahitileblog.fr/histoire-geographie/formation-iles-atolls-polynesie/

De par leur nature volcanique, les îles sont principalement constituées de basaltes dont la composition varie selon l'activité du point chaud, avec une teneur en silicate qui diminue en fonction du temps.

Le phénomène le plus actif aujourd'hui est celui de l'érosion des massifs, dont la cause majoritaire sont les pluies tropicales abondantes.

Les Figures 2 à 4 présentent les cartes géologiques simplifiées des trois îles étudiées.

Source : Evolution géologique de l'île de Tahiti-nui (Polynésie française): de la construction volcanique a l'érosion tardive, A. Hildenbrand et P.Y. Gillot

Source : L'île de Mooréa : Edification rapide d'un volcan bouclier polynésien, Le Dez et al., depuis le site du BRGM

Figure 4 : Carte géologique schématique de Bora Bora

Source : Géologie, géochimie et géochronologie de l'île de Bora Bora (Société, Polynésie française), S. Blais et al., 2000

1.2.1.2 Topographie et bathymétrie

Tahiti

Les principaux sommets sont répartis selon des crêtes E-W avec, au Nord l'ensemble Marau- Aorai - Pito-Iti - Orohena, et au Sud, l'alignement Mahutaa - Mouateau - Tetufera - Urufa. Entre ces murailles topographiques, une zone déprimée d'orientation Est-Ouest draine l'essentiel des produits érodés à travers les vallées de Punaruu, Papeihia, et le bassin central de la Maroto, qui s'ouvre vers le Nord par la vallée de la Papenoo. Le Mont Orohena à Tahiti est le plus haut, avec un sommet à 2241 m.

L'ensemble de l'île est cerné par une barrière récifale corallienne, bien développée sur les côtes Sud et Ouest mais restreinte et discontinue sur les côtes Nord et Est. Cinq passes se dénombrent sur la zone d'étude à Tahiti.

Mooréa

Moorea est une île de forme subtriangulaire qui représente le sommet d'un volcan-bouclier basaltique fortement disséqué par l'érosion. Ce volcan, le mont Tohiea, est le point culminant à 1 207m parmi les huit sommets de l'île. Elle est entourée par une barrière de corail ouverte sur l'océan Pacifique en douze passes.

Bora Bora

La structure d'ensemble de l'île est dissymétrique, en raison d'un relèvement des flancs Nord et Est du volcan, ce qui se traduit par des formations volcaniques imposantes et par la présence d'une couronne corallienne plus large et pratiquement continue dans ces parties de l'île. Le trait géomorphologique majeur de ce volcan océanique est la présence d'une caldeira centrée sur l'agglomération de Vaitape. Le plus haut sommet de Bora Bora est l'Otemanu qui culmine à 727 m. L'île est entourée par une barrière de corail qui ne présente qu'une seule ouverture sur l'océan au niveau de la passe de Teavanui.

Bathymétrie

Les isobathes au large des récifs barrières atteignent rapidement les 1000m et sont parallèles aux platiers récifaux.

A l'intérieur des lagons, les platiers se trouvent à des profondeurs faibles, entre 1m et 5m de fond. Des chenaux entre la côte et le platier forment parfois des dépressions soudaines allant jusqu'à -30m de fond environ. Au niveau des passes, la dépression peut être encore plus marquée avec des profondeurs pouvant avoisiner les 60m.

1.2.1.3 Typologie littorale

Le littoral de la zone d'étude est marqué par la présence de récifs coralliens qui forment des lagons (cf Figure 5) entrecoupés de passes. Des accumulations de sable dans les parties basses des îles et à l'abri des récifs barrières forment respectivement des plages et des motus.

Les massifs coralliens sont étroitement liés à l'érosion naturelle des îles puisqu'ils se développent sur les pentes sous-marines des volcans, à faible profondeur afin de capter suffisamment de lumière. Il existe trois principaux types de massifs coralliens : les récifs frangeants, les récifs barrières et les atolls, ce qu'illustre la Figure 6.

Figure 6 : Les trois types de récifs coralliens

Source : https://ifrecor.fr/ressources-recifs-coralliens/

Les récifs frangeants et barrières sont les deux qui se retrouvent sur la zone d'étude.

Récif frangeant : longe la côte, mais peut être séparé par un chenal d'embarcation peu profond et large de quelques mètres/dizaine de mètres (lié à la turbidité des eaux proches du rivage). C'est le type le plus élémentaire, sa répartition péri-insulaire peut être dissymétrique reflétant différentes conditions de vagues/vent, de décharge sédimentaire (différence des régimes de précipitation des façades des îles).

Récif-barrière : formation linéaire détachée de la terre principale, parfois à plus de 50 km. La ceinture est rarement continue mais tronçonnée par des passes. Entre le récif et la terre ferme, se trouve un lagon profond où sédimentent produits récifaux et déchets terrigènes en proportions variables suivant l'importance relative des terres émergées / surface du lagon.

Les récifs barrières, le lagon et les passes jouent un rôle important en cas de submersion marine. Les récifs barrières brisent les vagues qui déferlent alors dans le lagon. L'eau peut facilement entrer dans le lagon en tout point lorsque la houle est importante mais la hauteur des vagues à l'intérieur du lagon est trop faible pour que l'eau puisse sortir par le même chemin. Toute l'eau que la houle amène par-dessus la barrière de corail doit donc sortir par les passes.

Une partie du littoral est artificialisé. Selon un rapport ARAI 3 du BRGM², il n'existe quasiment pas d'ouvrages spécifiquement édifiés et dimensionnés pour lutter efficacement contre la submersion marine. Certains peuvent même avoir des effets néfastes sur les processus sédimentaires et contribuer à dégrader le littoral et les écosystèmes des lagons.

1.2.2 Agents météo-océaniques

1.2.2.1 Climat

Le climat est de type tropical humide. Le cycle annuel est bien marqué. Il se caractérise par des pluies fortes en saison chaude, qui deviennent souvent faibles en saison fraîche. La saison des pluies débute en novembre et s'achève en avril. Les mois de décembre et janvier sont les plus arrosés. Les pluies fortes sur l'archipel de la Société sont essentiellement dues à des systèmes organisés pris dans un flux général de nord à nord-ouest. Les côtes exposées à l'alizé et surtout les hauteurs sont beaucoup plus arrosées. Les températures sont chaudes mais pas excessives (movenne annuelle de 26°C à Faa'a).³

² Garcin M. (2013). Projet ARAI 3 : Aménagements et ouvrages côtiers polynésiens – incidence sur l'aléa submersion et impacts environnementaux. Rapport BRGM/RP-61656-FR ³ Météo France, https://meteo.pf/fr/climat-polynesie-francaise

1.2.2.2 Marées

Tahiti se trouve sur un nœud de résonance de la marée lunaire (point amphidromique) ce qui l'annule totalement. Ne reste que la composante de marée due au soleil, qui est beaucoup plus faible et synchronisée avec l'astre en question. Le marnage y est donc faible et les marées à heure fixe.

Le régime de marée autour de Tahiti comporte deux pleines mers par 24 heures ayant toujours lieu, l'une de 00h à 02h et l'autre de 12h à 14h. Les niveaux de marée caractéristiques des marégraphes sur chaque île sont compilés dans le tableau suivant (Tableau 1, renseigné en Cote Marine), tels qu'indiqués dans la version 2020 des Références altimétriques maritimes du SHOM. Les marégraphes sont localisés sur la Figure 7⁴.

Nom	РНМА	PMVE	PMME	NM	BMME	BMVE	PBMA	ZH/Ref
			Ta	ahiti				
Matavai	0.47	0.40	0.35	0.30	0.25	0.20	0.14	-0.298 NGPF
Vairao Oututaata	0.84	0.75	0.60	0.54	0.45	0.40	0.28	-0.413 IGN66
			Мс	orea				
Haapiti	0.61	0.55	0.50	0.40	0.35	0.30	0.23	-
Papetoai	0.66	0.60	0.45	0.47	0.40	0.40	0.33	-0.328 NGPF
			Bora	a-Bora	,			
Vaitape	0.36	0.35	0.30	0.23	0.20	0.10	0.04	-0.200 NGPF

Tableau 1 : Niveaux caractéristique des marées aux stations de Vairao Oututaata (Tahiti), Papetoai (Mooréa) et Vaitape (Bora-Bora), en côte marine (CM)

PHMA : Plus Haute Mer Astronomique, PMVE : Pleine Mer Vives Eaux, NM : Niveau Moyen BMVE : Basse Mer Vives Eaux PBMA : Plus Basse Mer Astronomique, ZH/Ref : altitude du zéro hydrographique (de la côte marine) dans le système altimétrique légal (IGN66 ou NGPF)

Source : SHOM - RAM 2020

Les niveaux d'eau aux stations de Papara, Paea Maraa et Punaauia ne sont pas renseignés. La côte du zéro hydrographique dans le système altimétrique légal à Haapiti n'est pas connue.

⁴ Les niveaux d'eau aux stations de Papara, Paea Maraa et Punaauia ne sont pas renseignés. La côte du zéro hydrographique dans le système altimétrique légal à Haapiti n'est pas connue.

Figure 7 : Carte des marégraphes de l'archipel de la Société

1.2.2.3 Houles

Selon le BRGM⁵, outre les houles cycloniques, la Polynésie Française est soumise à trois grands régimes de houles saisonnières : les houles d'alizés, les houles longues en provenance de l'hémisphère Nord et les houles de secteur Sud ou houles australes. Elles sont caractérisées par des hauteurs, périodes et directions bien spécifiques et, même si elles sont présentes toute l'année, elles sont plus ou moins marquées selon la saison.

- Les houles d'alizée provenant du Sud-Est ou de l'Est au Nord-Est sont relativement courtes, leur période est comprise entre 6s et 9s avec des hauteurs excédant rarement les 2m mais pouvant atteindre plus de 4m pendant les évènements exceptionnels. Elles s'observent toute l'année.
- Les houles de l'hémisphère nord s'observent principalement entre novembre et mars-avril et sont générées par les dépressions qui se développent au nord-ouest du pacifique. Ces houles, dont la hauteur est de l'ordre de 1m à 2m, sont généralement plus longues et peuvent atteindre des périodes de 20s.

⁵ Lecacheux S. et al.. 2013. Projet ARAI 3 : Evaluation probabiliste des houles et des surcotes cycloniques en Polynésie Française. Rapport BRGM/RP-61888-FR,

Les houles australes s'observent toute l'année mais leur fréquence et leur intensité sont plus marquées de juin à septembre. Elles sont générées par les dépressions de l'hémisphère sud. Ce sont également des houles longues dont la période se situe généralement entre 12s et 16s. Pendant les évènements les plus marquants, elles ont pu atteindre des hauteurs de 5m avec des périodes d'environ 15s.

L'étude ARAI 3⁶ a montré que les houles saisonnières ne sont pas le phénomène dominant au regard de la submersion marine. Les houles cycloniques engendrent des hauteurs de vague plus hautes (de l'ordre de 6.3m au minimum pour un cyclone centennal synthétique) que les plus fortes houles saisonnières observées jusqu'à présent (houle australe à 5m). Les houles cycloniques sont en outre accompagnées d'une surcôte liée à la dépression cyclonique et de vents plus violents.

1.2.2.4 Vent

L'ensemble de la zone d'étude est soumise au régime d'alizés auquel est soumis la Polynésie française. La prédominance du secteur Est s'observe clairement, caractéristique du régime d'alizés.

⁶ Lecacheux S. et al.. 2013. Projet ARAI 3 : Evaluation probabiliste des houles et des surcotes cycloniques en Polynésie Française. Rapport BRGM/RP-61888-FR,

1.2.2.5 Effets du changement climatique

L'élévation attendue du niveau marin moyen induit par le changement climatique est évaluée dans le dernier rapport en date du GIEC⁷, par le Groupe d'Experts Intergouvernemental sur l'évolution du Climat. Dans ce rapport, plusieurs scénarios d'évolution du climat sont proposés dont les deux suivants:

- Le RCP2.6 : scénario « optimiste » basé sur une diminution de l'émission des gaz à effet de serre ;
- Le RCP8.5 : scénario « pessimiste » basé sur une augmentation de l'émission des gaz à effet de serre

L'élévation totale du niveau moyen de la mer est représentée sur la Figure 8: elle représente la somme de toutes les composantes participant à l'élévation du niveau de la mer comme l'expansion thermique des océans, la fonte des glaciers continentaux et la fonte des calottes glaciaires antarctique et du Groenland. Les zones colorées représentent les intervalles de confiance du modèle de prédiction.

La détermination graphique des valeurs d'élévation pour différents horizons a été réalisée, les résultats sont présentés dans le tableau ci-dessous (l'année 2020 est prise comme date initiale).

Tableau 2 :	Valeurs	d'élévation	du niveau	marin pour	différents horizons,	par rapport	à l'année 2020
-------------	---------	-------------	-----------	------------	----------------------	-------------	----------------

Horizon	Δηρόο	S	cénario RCP2	6	Scénario RCP8.5		
nonzon	Annee	bas	médiane	haut	bas	médiane	haut
20 ans	2040	+0.03m	+0.09m	+0.14m	+0.05m	+0.11m	+0.16m
50 ans	2070	+0.11m	+0.21m	+0.31m	+0.24m	+0.36m	+0.49m
80 ans	2100	+0.18m	+0.34m	+0.48m	+0.50m	+0.74m	+0.98m
100 ans	2120	+0.21m	+0.38m	+0.54m	+0.65m	+1.01m	+1.36m

Source : GIEC, 2019

⁷ « Le changement climatique, les océans et la cryosphère », GIEC, septembre 2019

1.2.3 Hydrologie

Selon le PPR⁸, en général en Polynésie, les cours d'eau sont relativement pentus au droit de leur débouché dans la plaine, leurs écoulements en crues s'effectuent ainsi la plupart du temps en régime torrentiel.

L'influence des cours d'eau n'est pas intégrée à l'analyse de l'aléa submersion marine. Toutefois, une combinaison défavorable avec une crue concomitante peut accentuer l'aléa submersion en le superposant à un aléa inondation.

1.3 CONTEXTE ANTHROPIQUE

Ce chapitre reprend principalement les éléments des PPR de 2006.

En 2019, la Polynésie recensait 279 300 habitants. Sur 118 îles composant le territoire, 67 seulement sont habitées de façon permanente. Les îles du Vent, composés de deux îles principales (Tahiti et Moorea) sont les plus peuplées et regroupent 75% de la population. Tahiti joue le rôle de capitale administrative et économique de l'ensemble de la Polynésie. Elle est découpée en 12 communes dont Papeete représente le centre administratif. Le tourisme et la culture de la perle sont les principales activités économiques de ces îles.

Dans les îles hautes, l'activité humaine se concentre préférentiellement sur le bord littoral et le long des grands cours d'eau. Les constructions débordent le cadre de la plaine et occupent les premières pentes de la montagne jusqu'à des altitudes assez élevées. Les atolls habités ne comptent très souvent qu'un seul village, localisé à la passe ou à un point de débarquement des navires.⁹

BORA BORA

Bora Bora compte 10 600 habitants (en 2017) principalement concentrés à Vaitape. S'y trouve un aéroport qui la relie avec le reste de la Polynésie. Surnommée « la perle du Pacifique », c'est l'une des îles les plus visitées de Polynésie française. Malgré le flot touristique important, Bora-Bora reçoit régulièrement le label « pavillon bleu » qui récompense les communes pour leurs efforts en matière d'environnement.

TAHITI OUEST

Tahiti concentre la plus grande partie de la population de la Polynésie, avec plus de 190 000 habitants (en 2017). La côte Nord-Ouest (de Mahina à Punaauia) est le plus densément peuplé. L'île concentre l'essentiel des activités économiques de l'archipel polynésien. La ville de Papeete, située sur la côte nord-ouest de l'île, est la capitale de la Polynésie française et en abrite toutes les institutions politiques. Le tourisme contribue fortement à l'économie de l'île, d'autant que Tahiti abrite le seul aéroport international de la Polynésie française, lui donnant le statut de porte d'entrée du territoire.

MOOREA

Mooréa compte plus de 16 000 habitants regroupés dans plusieurs villages, principalement sur le littoral. Les principales activités sont le tourisme, la culture de l'ananas et la pêche. Moorea est la troisième île la plus visitée de la Polynésie française après Tahiti et Bora-Bora. C'est également un lieu réputé pour la recherche universitaire.

⁹ Plan de Prévention des Risques - Rapport de présentation, BRGM, 2016

⁸ Plan de Prévention des Risques - Note méthodologique de réalisation des cartes, BRGM, 2006

1.4 RAPPEL SUR LES PHÉNOMÈNES PHYSIQUES

1.4.1 Le phénomène de submersion marine

Les submersions marines sont des inondations temporaires par la mer de la zone côtière lors de conditions météorologiques et océaniques défavorables. Ces phénomènes étant généralement dus à des surélévations du niveau marin, les zones de topographie basses sont par définition les plus sensibles.

Les épisodes de tempête entraînent des surélévations du niveau de la mer qui s'ajoutent temporairement aux fluctuations du niveau d'eau d'origine astronomique (marées). Ces composantes principales sont :

- La surcote atmosphérique ou « marée de tempête » qui est une surélévation du niveau de la mer générée par :
 - la chute de la pression atmosphérique, appelée effet de baromètre inverse (1cm d'élévation du niveau d'eau pour ≈1 hPa de diminution de pression)
 - les courants induits par les vents d'afflux poussant les masses d'eau vers la côte ;
- La surcote de vague « wave setup » qui est une surélévation générée par le déferlement des vagues dans le secteur proche côtier ;
- Le jet de rive (flux et reflux des vagues à la côte) caractérisé par des variations instantanées du niveau d'eau à la cote.¹⁰

Le niveau moyen atteint par l'eau est donc la somme de ces contributions avec celle de la marée astronomique.

Source : BRGM

¹⁰ https://observatoire-risques-nouvelle-aquitaine.fr/risques/risques-naturels/submersion-marine/

1.4.2 Aléa cyclonique

1.4.2.1 Définition d'un cyclone

Ces phénomènes tourbillonnaires, de pression centrale très basse, tournent dans le sens des aiguilles d'une montre dans l'hémisphère Sud et dans le sens contraire dans l'hémisphère Nord. Ils s'étendent sur 500 à 1 000 km, et leur centre, appelé œil du cyclone, est bien visible sur les images satellitaires. D'un diamètre généralement de 30 à 60 km (parfois jusqu'à 150 km), cet œil est une zone d'accalmie (pas de pluie, vent faible).

À la différence des dépressions tempérées, les cyclones tropicaux sont des dépressions isolées, sans aucun système frontal. La zone autour de l'œil est constituée de cumulonimbus dont le sommet atteint 12 à 15 km d'altitude. Ce " mur " de nuages produit les effets les plus dévastateurs : les vents y soufflent jusqu'à 300 km/h et les pluies y sont diluviennes.

Les cyclones provoquent également des phénomènes maritimes très dangereux :

- Une houle longue générée par le vent et qui se déplace plus rapidement que le cyclone, elle est parfois observée jusqu'à 1 000 km à l'avant du cyclone.
- Une surélévation du niveau de la mer, connue sous le nom de « marée de tempête », le phénomène le plus meurtrier associé aux cyclones.

Les phénomènes cycloniques sont répartis en 3 catégories, selon l'intensité des vents associés. Lorsque la vitesse du vent de la perturbation dépasse les 63 km/h, le stade de tempête tropicale est atteint et le centre météorologique responsable de la zone concernée lui attribue un nom.

Trois classes de phénomènes cycloniques se distinguent :

- Si le vent est inférieur à 63 km/h (17.5 m/s), il s'agit d'une dépression tropicale ;
- Entre 63 et 117 km/h (entre 17.5 m/s et 32.5 m/s), c'est une tempête tropicale ;
- Au-delà de 117 km/h (32.5 m/s), c'est un cyclone.11

¹¹ Les cyclones, Météo France 2020, https://meteofrance.com/comprendre-la-meteo/le-vent/les-cyclones

Figure 11 : Représentation schématique d'un cyclone de l'hémisphère Nord

Source : https://meteofrance.com/comprendre-la-meteo/le-vent/les-cyclones#&gid=1&pid=1

1.4.2.2 Présence de l'aléa cyclonique

Selon le BRGM¹², les dépressions tropicales fortes et les cyclones sont relativement peu fréquents en Polynésie française qui se situe à l'extrême Est de la zone cyclonique du Pacifique Sud. Toutefois, selon les travaux de Larrue et Chiron¹³, l'archipel de la Société et celui des Australes forment un groupe d'îles le plus soumis à l'aléa cyclonique en Polynésie (cf Figure 9). Les côtes Ouest de l'archipel de la Société, notamment Bora-Bora, Raiatea, Taha, Moorea et Tahiti, sont plus exposées que les côtes Est.

Figure 12 : Fréquences de passage des tempêtes tropicales et des cyclones (par degré de latitude et de longitude) observés entre 1970 et 2009 en Polynésie française

Source : Les îles de Polynésie française face à l'aléa cyclonique, Sébastien Larrue et Thomas Chiron, 2015

En plus des fortes houles, les cyclones peuvent engendrer des surcotes dues à l'action du vent et de la dépression atmosphérique. S'il reste relativement peu fréquent, le risque cyclonique ne doit donc pas être négligé.

¹³ Les îles de Polynésie française face à l'aléa cyclonique, Sébastien Larrue et Thomas Chiron, 2015 https://doi.org/10.4000/vertigo.10558

¹² Lecacheux S. et al.. 2013. Projet ARAI 3 : Evaluation probabiliste des houles et des surcotes cycloniques en Polynésie Française. Rapport BRGM/RP-61888-FR

2 EVÈNEMENTS HISTORIQUES

2.1 SOURCES DE DONNÉES DISPONIBLES

Conduire une approche historique des tempêtes tropicales et des cyclones survenus en Polynésie française suppose d'avoir connaissance de tous les événements tempétueux ayant affectés la Polynésie sur une période déterminée. Si les traditions orales, notamment celles des Tuamotu, et la période pré-Européenne attestent de l'ancienneté des cyclones en Polynésie française, il n'y a aucune information sur le nombre des dépressions, leur nature, leurs fréquences et leurs intensités durant cette période. ¹⁴

Une première base de données tirée des observations effectuées par Giovannelli et Teissier couvre la période 1831 à 1977. Toutefois, avant les années 70, les données historiques sur les trajectoires et l'intensité des cyclones sont peu fiables et non exhaustives.

Dans les années 70 se développent le suivi des cyclones par satellite et la création de centres météorologiques régionaux spécialisés (CMRS) en charge de la veille cyclonique coordonnés par l'organisation météorologique mondiale (OMM). Plus récemment, dans le cadre du projet ARAI, et en particulier le projet ARAI3, un catalogue de cyclones entre les saisons 1977-1978 et 2009-2010 a été constitué¹⁵. Le catalogue ainsi constitué a été complété avec les cyclones récents, entre 2010 et mi-2021 (dernier cyclone en date de 2017), en utilisant les mêmes sources de données :

- IBTRACKS (Knapp, 2009) : c'est un produit fourni par la NOAA qui a réalisé une compilation des best-tracks issus de différentes agences (JTWC, TCWC Wellington, TCWC Brisbane, RSMC Nadi, etc.). Il s'agit de la base de données historiques la plus complète qui contient, pour chaque cyclone, les paramètres de toutes les agences ayant effectué des observations.
- JTWC qui est un centre de prévision des cyclones tropicaux géré conjointement par la US Navy et la US Air Force et est basé à Hawaï. Les best tracks fournies par le JTWC sont disponibles de 1945 à aujourd'hui dans les bassins « Pacific Nord Ouest » (WP), « Océan Indien Nord » (IO) et « Hémisphère sud » (SH) dont fait partie la Polynésie française. Pour chaque cyclone, plusieurs paramètres sont renseignés toutes les 6 heures dont : la position de l'œil, l'intensité du vent maximum (vent soutenu pendant une minute à 10 mètres d'élévation), la pression de surface minimale au centre du cyclone et le rayon de vent maximum. Pour les cyclones les plus anciens, la vitesse du vent n'est pas systématiquement renseignée dans la base. Aussi, celle-ci n'est exploitable qu'à partir de la saison 1977-1978.

2.2 EVENEMENTS CYCLONIQUES ET TEMPETES TROPICALES HISTORIQUES

Le tableau compilant les évènements historiques recensés est présenté en Annexe 1. En outre, une base de donnée géo-référencée a été créée dans le cadre de la présente étude et fait l'objet d'un livrable à part.

¹⁴ Les îles de Polynésie française face à l'aléa cyclonique, Sébastien Larrue et Thomas Chiron, 2015 https://doi.org/10.4000/vertigo.10558

¹⁵ Lecacheux S. et al.. 2013. Projet ARAI 3 : Evaluation probabiliste des houles et des surcotes cycloniques en Polynésie Française. Rapport BRGM/RP-61888-FR

2.2.1 Evènements historiques marquants

Outre le « cyclone » de 1831 qui reste mal documenté, celui de février 1878 a frappé de plein fouet l'archipel des Tuamotu faisant au moins 117 victimes (Teissier, 1977). La description de l'événement de 1878 (Teissier) est significative de la violence du phénomène qui ravage les atolls du Nord-Ouest de l'archipel.

Les cyclones les plus meurtriers sont ceux du début du 20ème siècle :

- Le cyclone de janvier 1903 a fait 515 victimes, dont 377 pour le seul atoll de Hikueru où des vagues de 12 mètres déferlent sur le récif (Teissier, 1977 ; Dupon, 1987).
- En février 1906, l'archipel de la Société et les Tuamotu sont de nouveau frappés par un cyclone. Cent vingt et une victimes sont recensées sur les atolls Paumotu. Sur l'atoll d'Anaa, des vagues de 8 mètres frappent le récif et l'élévation du niveau marin, qui atteint 2 à 3 mètres, submerge et rabote littéralement les motus. À Tahiti, la surcote atteint 2,75 mètres à Papeete et la mer pénètre jusqu'à 50 mètres à l'intérieur de la ville, détruisant 327 maisons européennes soit près de la moitié de la ville. Entre Taravao et Tautira, la plage a disparu et le trait de côte a reculé de 50 mètres (Teissier, 1977).

Il faut attendre les années 1980-1990 pour voir de nouveau apparaître des événements de forte intensité. Les cyclones de 1982-83 et 1997-98 marqueront la Polynésie par leur concentration et leur intensité

- La saison cyclonique de 1982-83 a provoqué des dégâts estimés à 84 millions d'Euros. Les cyclones Lisa, Nano, Orama, Reva, Veena et William vont successivement ravager les îles des Tuamotu et affecter les îles de la Société.
- Au cours de la saison cyclonique 1997-98, la Polynésie française va de nouveau connaître d'intenses épisodes. En novembre 1997, les trois atolls de Manuae, Mopelia et Bellingshausen sont balayés par le cyclone Martin. Maupiti est dans l'œil du cyclone Osea le 25 novembre 1997 puis dans celui d'Alan en avril 1998 où de violentes rafales détruiront embarcations, habitations, bâtiments publics et commerciaux (Doumenge, 1999). Les dégâts restent néanmoins moins importants que lors des épisodes du début du siècle et de 1982-83. ¹⁶

Le cyclone Kim frappe en mars 2000 l'archipel des Gambier, il cause quelques dégats à Rikitea et des vents à 137 km/h sont enregistrés à Rapa.¹⁷

Le 4 février 2010, le cyclone Oli frappe les lles de la Société puis se dirige vers les Australes. Des houles inhabituelles déferlent contre la digue du port de Papeete et inondent une partie des quais. Des rafales de plus 100 km/h se sont produites localement sur toutes les îles de la Société et une mer très grosse a été constatée avec des vagues de 6 à 7 mètres.¹⁸

2.2.2 Cyclones récents

Depuis Oli (2010), dernier cyclone majeur pris en compte dans le rapport ARAI3, sept autres cyclones ont été enregistré dans la base de données du JTWC :

- Pat et Sarah en février 2010,
- Zaka en février 2011,
- Garry en janvier 2013,

¹⁸ Communiqué météo France - bilan météorologique du cyclone Oli du 7 février 2010

¹⁶ Les îles de Polynésie française face à l'aléa cyclonique, Sébastien Larrue et Thomas Chiron, 2015 https://doi.org/10.4000/vertigo.10558

¹⁷ https://cyclonextreme.com/cyclonecaledoniesystmemo.htm

- Haley en février 2013,
- Mike en mars 2014,
- Niko en janvier 2015,
- Yalo en février 2016
- Bart en février 2017.

Pour le cyclone Yalo, le plus puissant d'entre eux, la houle générée n'a pas dépassé des hauteurs de 3.6m et le vent des vitesses de 14.2 m/s. Oli reste donc le dernier cyclone le plus marquant en date avec des houles atteignant 7.6m de hauteur significative et des vitesses de vent de 22 m/s (à proximité de Mooréa).

-

3 ANALYSE DES CONDITIONS CYCLONIQUES

Les conditions cycloniques d'états de mer par grande profondeur au large des trois îles de la zone d'étude ont fait l'objet de modélisations spécifiques dans le cadre de cette étude. La méthodologie et les résultats sont présentés ci-dessous.

3.1 METHODOLOGIE

3.1.1 Cyclones historiques sélectionnés

Les positions géographiques des cyclones détectés dans l'océan pacifique et leurs principales caractéristiques météorologiques (pression au centre, vitesse de vent, rayon cyclonique...) sont issues de la base de données IBTrACS (International Best Track Archive for Climate Stewardship) incluant les services météorologiques australiens, fidjiens et néo-zélandais responsables de la veille cyclonique dans cette région du monde. La base de données JTWC a servi de référence car c'est la plus complète en termes de nombre d'évènements et de renseignement des paramètres. Elle compte 98 cyclones entre 1946 et 2021, 2017 étant le dernier en date. La base de données Wellington a permis de compléter les informations, elle comporte sept cyclones non répertoriés par le JTWC.

Pour l'analyse, 77 cyclones observés entre 1977 et 2021 ont ainsi été sélectionnés. Les cyclones dont les paramètres ne sont pas suffisamment renseignés pour conduire l'analyse ou ceux ayant une intensité trop faible ont été écartés.

Ces éléments ont servi de base à la sélection des cyclones qui ont été analysés spécifiquement, puis modélisés un à un afin de définir leur structure météorologique sur la zone d'étude.

3.1.2 Points représentatifs

Afin de limiter le volume de données générées à traiter, 28 points d'analyse ont été définis. Ils ont été placés de sorte à couvrir toutes les façades des îles, avec une attention particulière portée aux enjeux (villes, aéroports...) et aux particularités morphologiques (baies, pointes, passes). Parmi ces points, 14 ont été sélectionnés comme représentatifs d'une portion homogène du littoral :

- 7 points d'étude autour de Bora-Bora dont 4 représentatifs,
- 11 points d'étude autour de Moorea dont 5 représentatifs,
- 10 points d'étude le long de la partie Nord-Ouest de Tahiti dont 5 représentatifs.

Ces points sont situés en mer profonde à environ 2.5 km des côtes et leur position est donnée dans le tableau suivant et illustrée dans les Figure 12 et 13.

BORA-BORA
B01 : 151.735 ° W / 16.425° S
B03 : 151.675 ° W / 16.505° S
B04 : 151.745 ° W / 16.575° S
B06 : 151.805 ° W / 16.490° S
MOOREA
M02 : 149.830 ° W / 17.455° S
M04 : 149.745 ° W / 17.470° S
M06 : 149.755 ° W / 17.565° S
M08 : 149.855 ° W / 17.620° S
M10 : 149.930 ° W / 17.555° S
ТАНІТІ
T01 : 149.600 ° W / 17.765° S
T03 : 149.640 ° W / 17.630° S
T05 : 149.640 ° W / 17.530° S
T07 : 149.555 ° W / 17.495° S
T09 : 149.495 ° W / 17.465° S

Tableau 3 : Coordonnées des points d'analyse des résultats

Source : GlobOcéan 2021

Une analyse des conditions cycloniques générées par les tempêtes historiques a été réalisée sur tous ces points d'analyse. Les « points représentatifs » ont fait l'objet d'analyses complémentaires concernant l'extrapolation des conditions historiques et les cyclones synthétiques de période de retour 100 ans.

Figure 13 : Localisation des points d'étude autour de Moorea et Tahiti

Source : GlobOcéan & BRLi / image google earth

Source : GlobOcéan & BRLi / image google earth

3.1.3 Définition des paramètres et conventions

- . .

.

PARAMETRES

Tableau 4 : Notations relatives aux états de mer			
Notation	Unité	Définition	
Hm0	m	Hauteur significative spectrale des vagues = 4 $\sqrt{m_0}$, où m ₀ est le moment d'ordre zéro du spectre $m_0 = \int f^n . E(f) . df$ avec n = 0	
Тр	S	Période Pic lissée Obtenue par ajustement parabolique sur le spectre discret autour du pic de plus forte énergie (après sommation sur les directions), et des deux fréquences situées de part et d'autre.	
Dirp	° / Nord	Direction Pic Définie comme la direction la plus énergétique de la bande de fréquence correspondant au Tp	

/. .

Source : GlobOcéan 2021

Tableau 5 : Notations relatives au vent

Notation	Unité	Définition
Ws	m/s	Vitesse moyenne du vent sur 10 minutes
		À une altitude de 10 m
Wd	° / Nord	Direction du vent
		Associée à Ws

Source : GlobOcéan 2021

CONVENTION

Très important : Par convention, les directions données sont :

- > Celles d'où viennent les vagues,
- Celles d'où vient le vent

STATISTIQUES GENERALES

Les diagrammes suivants sont utilisés pour montrer la répartition statistique de deux variables :

- Un « Scatter plot » ou « nuage de points » est une représentation graphique permettant de montrer les valeurs simultanées de deux variables issues d'une base de données. Les couples de données sont affichés sous forme de collection de points, la valeur du premier paramètre déterminant la position sur l'axe horizontal, la valeur du second celle sur l'axe vertical.
- Un « diagramme quantile-quantile » ou « Q-Q plot » est une méthode graphique pour comparer les distributions statistiques de deux paramètres en affichant pour chaque quantile leur valeur respective.

GRILLES DE CALCUL

Pour la détermination des conditions extrêmes cycloniques sur les 14 points de référence, la simulation des états de mer a été effectuée via l'utilisation de deux grilles globales de calculs (voir section 3.2.3) :

- Grille Globale (Domaine #1), commune à l'ensemble des sites
- Grille Régionale (Domaine #2), commune à l'ensemble des sites
- Grille Locale (Domaine #3BB) pour l'île de Bora-Bora
- Grille Locale (Domaine #3MT) commune à Moorea et Tahiti

MODELES D'ETATS DE MER

Le modèle d'état de mer **WaveWatch III** version 5.16 (voir Annexe 3) a été utilisé pour la modélisation des états de mer à l'échelle des grilles Globale et Régionale.

Le modèle d'état de mer **SWAN** version v41.20AB (voir Annexe 4) a été utilisé pour la propagation des états de mer jusqu'aux points de référence dans les deux grilles Locales.

DONNEES DE VENT ET DE BATHYMETRIE

Les mesures altimétriques de vitesse de vent et de Hm0 ont été utilisées dans le processus de modélisation à des fins de validation : les vents et états de mer simulés (à proximité des cyclones) sont directement comparés aux mesures satellitales après colocalisation.

La bathymétrie utilisée pour la modélisation des états de mer a été créée à partir de la base de données GEBCO 15' (General Bathymetric Chart of the Oceans).

CALIBRATION

- Calibration des champs de vent : Les champs de vent cycloniques ont été calibrés avec les mesures altimétriques de vitesse de vent à proximité des cyclones.
- Modélisation des états de mer : Le modèle d'états de mer WAVEWATCH III version 5.16 a été utilisé pour la génération des états de mer cycloniques dans les Domaine #1 et #2. Les hauteurs significatives des vagues modélisées ont été calibrées avec les mesures altimétriques de Hm0 à proximité des cyclones.

Une fois calibrés, ces états de mer cycloniques ont été propagés jusqu'aux points d'étude à l'aide du modèle d'états de mer SWAN version v41.20AB sur les deux grilles Locales.

Elaboration de la base de données : Les séries temporelles des spectres d'états de mer sur les 14 points d'étude correspondant aux cyclones modélisés (historiques et synthétiques), sont issues de la modélisation dans ces domaines définis. De ces spectres sont déduits les paramètres réduits requis.

3.1.5 Reconstitution des cyclones historiques

ANALYSE DE L'ACTIVITE CYCLONIQUE

Cette première phase de l'étude cyclonique est basée sur l'analyse des archives cycloniques sur une zone définie autour de la Polynésie (voir Figure 17). A la fin de cette tâche ont été sélectionnés les cyclones ayant eu un probable impact en terme de génération d'états de mer sur les différents points de référence.

Les critères de sélection combinent principalement la trajectoire, la structure (dimensions, vitesse et direction du vent), la stationnarité des phénomènes et les vitesses de déplacement des cyclones, aboutissant à la sélection de 77 cyclones historiques sur la période 1976 – 2020.

IMPLEMENTATION D'UN MODELE DE CHAMPS DE VENTS CYCLONIQUES

Les données météorologiques méso-échelles disponibles (champs de vents et/ou paramètres météorologiques) durant les événements cycloniques ne sont généralement pas suffisantes pour modéliser correctement les effets cycloniques. Afin de pallier ce problème, un modèle mathématique est mis en œuvre. Il utilise les informations sur les structures des cyclones (position, intensité et rayon du vent maximal, pression à l'œil), afin de créer un champ de vent cyclonique synthétique à haute résolution.

Ce modèle paramétrique de vent est validé par comparaison avec les mesures satellitales collectées lors du passage des cyclones historiques.

RECONSTITUTION DES ETATS DE MER CYCLONIQUES HISTORIQUES

La grille de calcul (modèle WaveWatch III) définie pour l'étude est alors utilisée pour simuler les états de mer cycloniques historiques dans la zone globale et régionale, en utilisant comme forçage atmosphérique les champs de vents cycloniques définis (voir section 3.2.2).

Cette modélisation des états de mer est validée par comparaison avec les mesures satellitales de hauteurs significatives d'états de mer Hm0 collectées lors du passage des cyclones historiques.

Puis, une fois validés, ces états de mer sont propagés jusqu'aux sites d'étude à l'aide du modèle de propagation SWAN pour les deux grilles locales.

3.1.6 Détermination des conditions extrêmes cycloniques

Afin de déterminer les valeurs extrêmes cycloniques sur une période de retour 100 ans des états de mer et de vent aux 14 points de référence, deux méthodes distinctes ont été mises en œuvre.

3.1.6.1 Méthode basée sur des cyclones synthétiques

VITESSE DE VENT EXTREME CORRELEE A LA DISTANCE AUX SITES

Les vitesses de vent cycloniques extrêmes pour la période de retour de 100 ans ont été obtenues par l'analyse des intensités de vent de chacun des cyclones historiques répertoriés dans le bassin océanique considéré, conditionnées à la distance au site étudié.

DESCRIPTEURS CYCLONIQUES COMPLEMENTAIRES

Les caractéristiques empiriques des descripteurs cycloniques complémentaires (rayon cyclonique, vitesse de déplacement, trajectoire, variation de l'intensité du vent durant l'évolution du cyclone) ont été déterminées de façon statistique en étudiant les cyclones historiques détectés dans la zone d'étude depuis 1976.

Pour chacune de ces caractéristiques la valeur statistique la plus probable (en corrélation avec l'intensité du vent cyclonique) a été retenue pour caractériser un cyclone empirique représentatif de la zone d'étude.

RECONSTITUTION DES ETATS DE MER CYCLONIQUES EXTREMES AUX POINTS D'ETUDE

Les grilles de calcul (génération des états de mer au large à l'aide du modèle WaveWatchIII, puis propagation à l'aide du modèle SWAN sur les deux grilles locales) ont été utilisées pour la reconstitution des états de mer cycloniques extrêmes.

Le forçage atmosphérique est directement issu des différents cyclones synthétiques extrêmes déterminés (voir section 3.2.5.1).

3.1.6.2 Méthode basée sur les cyclones historiques

Par cette méthode les conditions extrêmes d'états de mer et de vents cycloniques en chaque point sont directement obtenues par analyse extrême directe des valeurs issues de la modélisation des cyclones historiques sélectionnés, comme détaillé section 3.2.5.2.

3.2 CONDITIONS EXTREMES CYCLONIQUES

3.2.1 Données de base

BATHYMETRIE

La bathymétrie utilisée pour la reconstitution des états de mer cycloniques a été créée à partir de la base de données **GEBCO 15**'.

La version de WAVEWATCH III (5.16) utilisée lors de cette étude en grille Globale et Régionale est également capable de prendre en compte des données d'obstruction pour améliorer la modélisation de la propagation des états de mer autour des îles et des parties de terre dont les dimensions sont inférieures à la résolution du modèle. Un pourcentage, représentant la proportion de terre et de mer en propagation zonale et méridionale, est attribué à chaque point de grille. Cette valeur définit la proportion de chacune des composantes d'état de mer qui passe par le point de grille considéré.

Les Figures 15 et 16 ci-dessous montrent les grilles bathymétriques pour les deux grilles locales à Bora-Bora et à Moorea et Tahiti.

Source : GlobOcéan 2021

MESURES SATELLITALES

Dans cette étude, les mesures satellitales altimétriques (voir description en Annexe 2) de Hm0 et de vitesse de vent ont été utilisées.

Les mesures de vitesse de vent ont été utilisées pour la calibration/validation des champs de vent cycloniques utilisés en entrée du modèle numérique de génération d'états de mer. Les mesures de hauteurs significatives d'états de mer Hm0 ont été utilisées pour la calibration/validation des états de mer cycloniques générés par le modèle.

ARCHIVES CYCLONIQUES

Comme précisé section 3.1.1, les positions géographiques des cyclones détectés dans l'océan Pacifique et leurs principales caractéristiques météorologiques sont issues de la base de données IBTrACS (International Best Track Archive for Climate Stewardship) incluant les services météorologiques australiens, fidjiens et néo-zélandais responsables de la veille cyclonique dans cette région du monde.

Les paramètres utilisés sont :

- L'identification du cyclone
- La date de début et de fin
- Les coordonnées de la trajectoire
- La pression au centre
- La vitesse de vent
- Le rayon cyclonique

Ces éléments ont servi de base à la sélection des cyclones qui ont été analysés spécifiquement, et modélisés d'un point de vue de leur structure météorologique par la suite.

3.2.2 Mise en œuvre du modèle cyclonique

MODELE CYCLONIQUE

Les champs de vent classiquement utilisés pour les études des conditions usuelles d'états de mer (par exemple les ré analyses du modèle CFSR NCEP contenant les paramètres vitesse et direction du vent à une altitude de 10 mètres toutes les 6 heures avec une résolution spatiale de 0.5°) ont une résolution inadéquate pour représenter correctement les phénomènes cycloniques.

En conséquence, le forçage atmosphérique en conditions cycloniques est reproduit via l'utilisation d'un modèle paramétrique basé sur le modèle de Holland (2010). Ce modèle nécessite une complète description des caractéristiques du cyclone : vitesse du vent, trajectoire, vitesse de déplacement.... Ces paramètres sont obtenus dans la base de données IBTrACS (cf. section 3.2.1).

Le champ de vent final est donc un champ de vent cyclonique paramétrique, couvrant la zone d'influence de chaque cyclone modélisé (cyclone historique ou cyclone synthétique extrême), permettant une représentation réaliste du forçage atmosphérique lors de ces événements.

SELECTION DES CYCLONES HISTORIQUES

Cette première phase de l'étude cyclonique consiste à analyser la base de données d'archives cycloniques relative à la zone d'étude afin de sélectionner les cyclones historiques (sur la période 1976 – 2020) ayant eu un impact en termes de génération d'états de mer aux points d'étude.

Au final, un cyclone historique a été sélectionné si sa trajectoire l'a fait passer dans une zone délimitée par [164.0 W – 144.0 W] en longitude et [26.0 S – 11.0 S] en latitude (voir Figure 17). L'hypothèse a été faite que tout cyclone passant dans cette zone a pu avoir une influence sur les sites d'étude, et que, au contraire, les cyclones hors de cette zone ont eu une influence mineure ou nulle.

Ainsi, une sélection de 77 cyclones historiques sur la période 1976 – 2020 a été effectuée, leurs trajectoires et intensités (échelle Saffir-Simpson) sont présentées en Figure 17.

Figure 17 : Trajectoire et intensité (Echelle Saffir-Simpson) des cyclones historiques sélectionnés.

Source : GlobOcéan 2021

3.2.3 Modèles numériques de génération des vagues

MODELISATION EN GRILLE GLOBALE ET REGIONALE

La modélisation des états de mer au site dans les domaines Global et Régional est effectuée par l'utilisation du modèle de vagues de 3ème génération WAVEWATCH III (Annexe 3) version 5.16.

WAVEWATCH III est un modèle d'états de mer en points de grille de 3ème génération. Il calcule les champs de vagues par génération, propagation et dissipation des états de mer sur la zone de simulation concernée, en utilisant les champs de vent en entrées (forçage atmosphérique).

Pour ces domaines, la simulation des états de mer a été effectuée dans les grilles de calcul (voir Figure 18) ayant les caractéristiques indiquées dans le Tableau 6 suivant :

	0			
		Domaine Global	Domaine Régional	
	Emprise géograph	ique et résolutions spatial	es	
	Latitude Nord	11.00° S	14.00° S	
Limitos	Latitude Sud	26.00° S	20.00° S	
Linites	Longitude Ouest	164.00° W	155.00° W	
	Longitude Est	144.00° W	147.00° W	
Résolution	spatiale	0.2° x 0.2°	0.1° x 0.1°	
	В	athymétrie		
Origir	e	GEBCO 15'	GEBCO 15'	
		Forçages		
Vents cyclo	niques	Modèle paramétrique	Modèle paramétrique	
Conditions a	ıx limites	N/A	Domaine Global	
Modèle				
Modè	e	WW3	WW3	
Versio	on	5.16	5.16	
Bandes direct	ionnelles	36	36	
Bandes de fréquence	Nombre	32	32	
banues de nequênce	Intervalle (Hz)	0.0373 – 0.7159	0.0373 – 0.7159	

Tableau 6 : Modélisation des vagues – Caractéristiques physiques – Domaines #1 et #2

Source : GlobOcéan 2021

Figure 18 : Emprise des grilles de modélisation Globale et Régionale

Source : GlobOcéan 2021

MODELISATION EN GRILLES LOCALES

Une fois les spectres d'énergie d'états de mer générés en grille Régionale, la propagation des états de mer jusqu'aux 14 points de référence est mise en œuvre à l'aide du modèle SWAN version v41.20AB (voir Annexe 4) sur les deux grilles Locales (Bora-Bora et Moorea/Tahiti).

Les Tableaux 7 et 8 ci-dessous résument les caractéristiques des grilles de propagation et les paramètres physiques utilisés. La Figure 19 montre les emprises de ces grilles.

		Domaine Local Bora-Bora		
Empris	se géographique et re	ésolutions spatiales		
Latitude Nord		16.10° S		
Limites	Latitude Sud	17.10° S		
	Longitude Ouest	152.10° W		
	Longitude Est	151.20° W		
Résolution	spatiale	~500m x 500m		
Bathymétrie				
Origi	ne	GEBCO 15'		
Forçages				

Tableau 7 : Modélisation des vagues – Caractéristiques physiques – Grille Locale Bora-Bora

Vents cyclon	iques	Modèle paramétrique
Conditions aux	c limites	Domaine Régional
	Modèle	
Modèle	•	SWAN
Versior	1	41.20AB
Bandes direction	onnelles	36
Bandes de fréquence	Nombre	32
	Intervalle (Hz)	0.0373 – 0.7159

Source : GlobOcéan 2021

Tableau 8 : Modélisation des vagues – Caractéristiques physiques – Grille Locale Moorea/Tahiti

		Domaine Local Moorea / Tahiti
Empris	e géographique et re	ésolutions spatiales
	Latitude Nord	17.20° S
Limites	Latitude Sud	18.10° S
Linitoo	Longitude Ouest	150.10° W
	Longitude Est	149.00° W
Résolution	spatiale	~500m x 500m
	Bathymét	rie
Origir	e	GEBCO 15'
	Forçage	S
Vents cyclo	niques	Modèle paramétrique
Conditions a	ux limites	Domaine Régional
	Modèle	
Modè	le	SWAN
Versio	on	41.20AB
Bandes direct	ionnelles	36
Bandes de fréquence	Nombre	32
	Intervalle (Hz)	0.0373 – 0.7159

Source : GlobOcéan 2021

Figure 19 : Emprise des grilles de modélisation Locales de Bora-Bora et de Mooréa/Tahiti

Source : GlobOcéan 2021

3.2.4 Reconstitution des cyclones historiques

Les champs de vents cycloniques correspondant aux 77 cyclones sélectionnés ont été reconstitués selon la procédure décrite en section 3.2.2. Ces champs de vent ont par la suite été utilisés comme forçage atmosphérique du modèle d'états de mer WaveWatch puis Swan afin de reconstituer les états de mer générés par ces événements historiques aux 14 points de référence.

Une validation de cette modélisation paramétrique des cyclones a été effectuée par comparaison avec les mesures satellitales collectées lors du passage des cyclones historiques, d'une part sur le paramètre de vitesse de vent Ws (validation des champs de vent) et d'autre part sur le paramètre de hauteur significative d'états de mer Hm0 (validation des résultats de la modélisation des états de mer cycloniques).

Ces validations sont effectuées après colocalisations entre les mesures satellitales disponibles et les valeurs modélisées (vitesse de vent et hauteur significative des vagues). Seuls les couples de valeurs (modèle/mesure) se trouvant à moins de 300 kilomètres de la position de l'œil du cyclone ont été conservés, afin de focaliser les comparaisons dans la partie active des cyclones.

Les comparaisons entre les vitesses de vent paramétriques et les mesures, ainsi que celles entre les hauteurs significatives Hm0 modélisées et celles mesurées, sont présentées aux Figures 20 à 23.

Ces figures montrent une bonne corrélation entre les deux bases de données. Ainsi, à ce stade, le modèle paramétrique est considéré comme étant validé et est appliqué sur l'ensemble des 77 cyclones historiques sélectionnés, afin de déterminer les conditions d'états de mer cycloniques sur les 14 points de référence.

Des illustrations de champs de vents et de vagues cycloniques sont présentées en Annexe 7

Figure 20 : Validation du vent cyclonique paramétrique – Nuage de points - 0 < D < 300 km

Source	GlobOcéan	2021	
3001 CE	Gioboceun	ZUZI	

Source : GlobOcéan 2021

Figure 23 : Validation du Hm0 – Q-Q plot – 0 < D < 300 km

Source : GlobOcéan 2021

3.2.5 Détermination des conditions cycloniques extrêmes

Afin de déterminer les conditions cycloniques extrêmes (période de retour 100 ans) aux différents points d'étude, deux méthodes ont été employées :

- La première méthode consiste à construire des champs de vents cycloniques extrêmes synthétiques représentatifs des conditions du site (section 3.2.5.1)
- La seconde méthode est basée sur l'analyse extrême directe de la base de données cycloniques issue des événements historiques (section 3.2.5.2)

3.2.5.1 Conditions extrêmes issues des vents cycloniques synthétiques

Le modèle paramétrique cyclonique basé sur les travaux de Holland et précédemment validé a été utilisé pour construire ces champs de vents extrêmes synthétiques. Les caractéristiques de ces champs de vents sont issues de l'analyse statistiques des 77 cyclones historiques répertoriés.

Afin d'estimer la vitesse de vent extrême (pour la période de retour 100 ans) conditionnée à la distance de passage du cyclone par rapport au site d'étude, une analyse extrême bi-variée sous la forme de courbes d'iso-probabilités de retour appelées IFORM (Inverse First Order Reliability Method) est mise en œuvre.

Cette méthode se base sur les travaux référencés suivants :

- IFORMs Return Period for Environmental Loads Combination of Wind and Wave Loads for Offshore Wind Turbines CF Christensen, T Arnbjerg-Nielsen EFP'99, 2000
- IFORMs Modified inverse first-order reliability method (I-FORM) for predicting extreme sea states Eckert-Gallup, Aubrey Celia, et al. Diss. 2015

Le point de référence choisi pour déterminer les couples Vitesse/Distance est un point représentatif des deux zones d'étude, il a pour coordonnées 150.70° W / 17.00° S.

Les distances entre ce point de référence et la position de l'œil du cyclone à chaque pas de temps sont affichées sous forme de nuage de points, présenté Figure 24. Sur ce diagramme, les points bleus représentent les différents couples de valeurs Ws/Distance (site/œil du cyclone à chaque pas de temps) issus de la base de données des cyclones historiques sélectionnés.

La courbe noire représente le contour d'iso-probabilité correspondant à une période de retour 100 ans.

A partir de cet IFORM sont obtenues (pour la période de retour considérée) un nombre infini de couple Ws/Distance. Le choix a été fait, de façon à être conservatif, de sélectionner le couple assurant une distance minimale entre le site et la position du vent maximal dans le cyclone extrême. Ce couple de valeur est montré sous forme de cercle noir entourant un astérisque rouge. Les valeurs finales sont exposées dans le Tableau 9 suivant.

La distance mentionnée dans cette table est celle entre le point de référence et la position du vent maximal dans le cyclone, tandis que l'IFORM est constitué des distances entre le point de référence et la position de l'œil du cyclone. Ceci explique le « décalage » du couple Ws/Distance retenu affiché sur l'IFORM, ce décalage équivaut à un rayon cyclonique (distance entre l'œil et la position du vent maximal dans le cyclone).

Tableau 9 : Valeurs extrêmes cycloniques de vitesse de vent et distance associée (Distance entre le site d'étude et la position du vent maximal dans la structure du cyclone)

Périodes de retour	Ws	Distance
(années)	(m/s)	(Km)
100	39	0

Figure 24 : IFORM Ws/Distance site d'étude par rapport à la position du cyclone

Les caractéristiques des cyclones extrêmes correspondant à la période de retour 100 ans déduites de cette analyse sont appliquées à l'ensemble des 14 points de référence de l'étude.

Afin de caractériser les cyclones extrêmes pouvant impacter les sites étudiés, les vitesses de vent maximales et les distances de passage de l'œil par rapport au point défini ne sont pas des éléments suffisants.

En effet les descripteurs cycloniques complémentaires suivants doivent être déterminés :

- Les rayons cycloniques (distance entre l'œil du cyclone et la position du vent maximal dans la structure cyclonique, à chaque pas de temps). Dans cette étude ces rayons sont calculés directement dans le modèle de Holland.
- La vitesse de déplacement du cyclone.
- La variation de l'intensité du vent le long de la trajectoire, normalisée à chaque pas de temps en pourcentage par rapport à la vitesse maximale atteinte par le cyclone, cette vitesse maximale étant atteinte au plus près du site d'étude.
- La trajectoire des cyclones extrêmes.

La vitesse de déplacement du cyclone ainsi que la variation normalisée de l'intensité du vent le long de la trajectoire sont déduites d'une étude statistique de la distribution de ces vitesses et variations pour chaque cyclone historique sélectionné. Les valeurs les plus probables de ces paramètres ont été retenues pour construire les champs de vents cycloniques extrêmes.

Au final, une vitesse de déplacement de 13 km/h a été retenue pour les cyclones extrêmes, et la forme de la variation relative de l'intensité du vent est montrée en Figure 25, la valeur maximale du vent étant atteinte à la distance minimale par rapport au site selon les critères déterminés par l'IFORM (Figure 24). Par commodité de calcul, le maximum du cyclone est arbitrairement atteint au 15^{ème} jour de modélisation.

Figure 25 : Evolution normalisée de la vitesse du vent lors des cyclones extrêmes

L'analyse des cyclones historiques montre que les cyclones dans la zone d'étude peuvent principalement avoir aux abords des sites une direction de déplacement comprise entre l'Est-Sud-Est (cap 150° /N) et le Sud (Cap 180° /N). Il a donc été défini 3 directions de déplacements entre le 150° /N et le 180° /N au pas de 30°.

Ainsi, les calculs des états de mer cycloniques extrêmes ont été effectués avec ces champs de vents synthétiques pour la période de retour de 100 ans.

Cette méthode a mené à préparer pour chacun des 14 points de référence 3 champs de vents différents représentant ces cyclones synthétiques (3 directions de déplacement).

Soit un total de 42 cyclones synthétiques, pour l'ensemble des 14 points d'étude.

La Figure 26 ci-dessous montre à titre d'exemple la trajectoire et l'intensité relative du vent (Normalisation) pour le cas du point T09 (au Nord de Tahiti), avec un angle de déplacement du cyclone synthétique de 150° /N.

Figure 26 : Exemple de trajectoire cyclonique synthétique

Source : GlobOcéan 2021

Les états de mer cycloniques ont ensuite été modélisés dans les 4 grilles de calcul respectives aux zones étudiées. Les valeurs maximales obtenues en chaque point de référence ont été collectées et synthétisées dans la table résultante des conditions extrêmes cycloniques (voir Annexe 5).

Dans le cadre de cette étude nous avons volontairement choisi de modéliser, pour la période de retour de 100 ans, les cyclones synthétiques les plus contraignants pour chacun des 14 points de référence (ceux qui passent le plus près du point étudié), afin d'obtenir les valeurs les plus conservatives.

Des illustrations de champs de vents et de vagues cycloniques synthétiques sont montrées en Annexe 7.

3.2.5.2 Conditions extrêmes cycloniques issues des cyclones historiques

Les conditions extrêmes cycloniques ont également été déterminées par extrapolation directe de la base de données générée par les cyclones historiques.

Les extrapolations sont effectuées à l'aide de la bibliothèque Python 'pyextremes' (développée par Dr. Georgi Boshnakov) destinée à effectuer des analyses extrêmes (Extreme Value Analysis - EVA) univariée. Elle fournit les outils nécessaires pour effectuer un large éventail de tâches requises pour effectuer l'EVA, telles que :

 Détection d'événements extrêmes à partir de séries chronologiques à l'aide de la méthode Peaks Over Threshold (POT)

- Détermination des valeurs modales du paramètre concerné pour une période de retour donnée par l'utilisation de loi d'ajustement, telles que Generalized Pareto Distribution (GPD) ou Exponentielle
- Visualisation des entrées de modèle, des résultats et des statistiques de qualité d'ajustement
- Outils d'aide à la sélection et au réglage du modèle, tels que la sélection du seuil pour la méthode POT

La liste des cyclones historiques ayant servi de base à cette étude ainsi que les valeurs maximales de Hm0 et Ws générées par ces cyclones aux 14 points de référence sont montrées en Annexe 8, ce sont ces valeurs qui ont été extrapolées.

Les valeurs extrêmes ont été déterminées pour la période de retour 100 ans. Le résultat de l'extrapolation présente la valeur la plus probable (mode) sur la période de retour choisie.

Les valeurs extrêmes obtenues en chaque point de référence ont été collectées et synthétisées dans la table résultante des conditions extrêmes cycloniques (voir Annexe 6).

3.3 SYNTHESE SUR LES CONDITIONS CYCLONIQUES MODELISEES

Les conditions extrêmes cycloniques ont donc été élaborées selon deux méthodologies différentes.

- Une première méthode est basée sur la constitution de cyclones synthétiques, c'est-à-dire des cyclones totalement modélisés, avec des caractéristiques (rayon, intensité, déplacement) déterminées par une analyse statistique des cyclones historiques de la zone.
- La seconde méthode est basée sur l'extrapolation directe des valeurs obtenues aux 14 points de référence par modélisation des cyclones historiques.

La seconde méthode a l'avantage de représenter les conditions ayant réellement impactées les sites étudiés. Cependant, cette méthode ne prend pas en considération le caractère aléatoire des passages cycloniques dans un bassin (ou région) déterminé : un cyclone critique a autant de chances de passer sur le site d'étude et avoir un fort impact, que de passer suffisamment loin pour n'avoir qu'un impact minime.

En revanche, la première méthode présentée consiste à prendre simultanément en considération les différentes caractéristiques des cyclones pouvant impacter un site déterminé et considère l'ensemble des cyclones pouvant être générés dans la zone étudiée. Le résultat (sous la forme d'IFORM) est alors un ensemble de cyclones potentiels ayant la même probabilité d'occurrence.

Les résultats obtenus, au niveau des 14 points de référence, avec les deux méthodes sont présentés dans les tableaux ci-dessous :

	CONDITIONS EXTREMES CYCLONIQUES Période de retour 100 ans (cyclones synthétiques)						
	Para mètres d'é	tats de mer aux poi	nts de référence	Vents a	ssociés		
POINTS	(Correspo	ondant à la valeur ma	ax du Hm0)	(Correspondant	au max du Hm0)		
POINTS	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)		
B01	8.7	11.1	305	39.0	310		
B03	8.2	10.9	5	39.0	80		
B04	6.3	9.5	265	39.0	275		
B06	9.1	11.2	315	39.0	310		
M02	9.2	11.2	315	39.0	310		
M04	8.9	11.2	305	39.0	310		
M06	7.2	10.7	15	39.0	80		
M08	7.5	11.1	295	39.0	310		
M10	9.0	11.2	315	39.0	310		
T01	8.1	10.8	295	39.0	310		
тоз	7.5	11.2	335	39.0	340		
T05	8.7	11.2	335	39.0	340		
т07	9.2	11.3	305	39.0	310		
T09	9.3	11.2	305	39.0	310		

Tableau 10 : Valeurs extrêmes d'états de mer cycloniques – Méthode cyclones synthétiques

Source : GlobOcéan 2021

Note : Ces valeurs sont celles obtenues via la méthodologie décrite dans la section 3.2.5.1 (méthode basée sur la reconstitution de cyclones extrêmes synthétiques).

49

	CONDITIONS EXTREMES CYCLONIQUES Période de retour 100 ans (Basées sur extrapolation directe des cyclones historiques)						
	Para mètres d'é	tats de mer aux poir	nts de référence	Vents a	ssociés		
POINTS	(Correspo	ndant à la valeur ma	x du Hm0)	(Correspondant	au max du Hm0)		
POINTS	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)		
B01	8.8	11.7	305	28.0	350		
B03	7.7	11.1	45	29.0	110		
B04	5.9	11.3	265	31.0	320		
B06	9.0	11.6	315	28.0	330		
M02	8.4	12.2	325	24.0	320		
M04	8.2	12.5	325	25.0	325		
M06	6.1	12.6	55	24.0	120		
M08	7.1	13.0	275	29.0	345		
M10	8.1	13.2	325	24.0	345		
T01	7.1	13.0	285	26.0	325		
T03	6.1	12.0	335	23.0	325		
T05	7.4	13.0	325	24.0	325		
T07	8.0	13.0	325	25.0	325		
Т09	8.3	13.0	315	29.0	325		

Tableau 11 : Valeurs extrêmes d'états de mer cycloniques – Méthode cyclones historiques

Source : GlobOcéan 2021

Note : Ces valeurs sont celles obtenues via la méthodologie décrite dans la section 3.2.5.2 (méthode basée sur l'extrapolation directe des valeurs issues de la modélisation des cyclones historiques).

La comparaison des résultats obtenus par les deux méthodes montre :

- Que les valeurs extrêmes de Hm0 et Ws issues de la méthode « synthétique » bien que supérieures à celles obtenues par la méthode « historiques », restent du même ordre de grandeur.
- Que les périodes pics associées issues de la méthode « historique » sont supérieures à celles obtenues avec la méthode « synthétique », ce qui traduit le fait que les cyclones historiques sont générés plus loin du site que les synthétiques (que nous avons fabriqués de telle façon qu'ils passent sur le site).
- Que les directions associées (celles des vagues et celles du vent) sont sensiblement semblables.

4 ALEA DE REFERENCE

La méthodologie du choix de l'évènement de référence à prendre en compte pour l'aléa submersion marine dans le cadre d'un PPRN est très cadrée. Elle est de la manière suivante dans la note méthodologique associée :

« [...] dans le cadre de la réalisation d'études d'aléa submersion marine, il est recommandé de réaliser une analyse des événements tempétueux historiques et des niveaux marins qu'ils ont engendrés à la côte. Ces niveaux marins ne sont pas directement comparables aux niveaux marins statistiques, puisqu'il ne s'agit en général pas de mesures issues de marégraphes. En revanche, ils permettent d'apporter une information de niveau atteint en conditions exceptionnelles. La confrontation de ces niveaux aux niveaux marins statistiques centennaux à la côte permet de déterminer l'événement de référence à retenir dans le cadre d'études d'aléa submersion marine, notamment dans le cadre des études préalables à l'élaboration de PPRL. »

Il faut donc déterminer et retenir comme « évènement de référence » l'événement le plus fort entre :

- Un évènement calculé d'occurrence centennale
- L'évènement historique connu le plus fort : Oli, Veena et Rewa dans notre cas (cf. section 2.2)

Dans le cas des conditions cycloniques telles qu'analysées en sections 2 et 3 (cf. récapitulatif Tableau 12 en page suivante), les cyclones synthétiques centennaux sont plus pénalisants par rapport aux cyclones historiques, ceci pour la majorité des points de référence.

Nous proposons donc de retenir les conditions extrêmes calculées via des « cyclones synthétiques » de période de retour 100 ans comme « événements de référence ».

Toutefois, pour le point B01 (cf. valeurs en rouge dans le Tableau 12 ci-dessous), il est difficile à ce stade de statuer la condition la plus extrême entre le cyclone synthétique centennal et le cyclone historique extrapolé. Les deux conditions seront modélisées et le résultat le plus pénalisant sera retenu.

IMPACT DU RECHAUFFEMENT CLIMATIQUE

Concernant l'impact du réchauffement climatique l'augmentation retenue du niveau marin à long terme retenue est de +60cm, ce qui correspond aux prévisions à 100 ans réalisées par le GIEC, comprises entre +0.38cm et +1.01m (valeurs médianes des scénarios RCP2.6 et RCP8.5, voir section 1.2.2.5).

E	

	CONDITIONS EXTREMES CYCLONIQUES Période de retour 100 ans (cyclones synthétiques)						CONDITI Pé (Basées sur extrap	ONS EXTREMES CYCL ériode de retour 100 polation directe des cy	ONIQUES ans vclones historiques)	
	Paramètres d'é	tats de mer aux poin	its de référence	Vents a	associés	Paramètres d'e	états de mer aux poin	ts de référence	Vents a	issociés
DOINTS	(Correspo	ndant à la valeur max	x du Hm0)	(Correspondant	au max du Hm0)	(Correspo	ondant à la valeur ma	x du Hm0)	(Correspondant	au max du Hm0)
POINTS	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)
B01	8.7	11.1	305	39.0	310	8.8	11.7	305	28.0	350
B03	8.2	10.9	5	39.0	80	7.7	11.1	45	29.0	110
B04	6.3	9.5	265	39.0	275	5.9	11.3	265	31.0	320
B06	9.1	11.2	315	39.0	310	9.0	11.6	315	28.0	330
M02	9.2	11.2	315	39.0	310	8.4	12.2	325	24.0	320
M04	8.9	11.2	305	39.0	310	8.2	12.5	325	25.0	325
M06	7.2	10.7	15	39.0	80	6.1	12.6	55	24.0	120
M08	7.5	11.1	295	39.0	310	7.1	13.0	275	29.0	345
M10	9.0	11.2	315	39.0	310	8.1	13.2	325	24.0	345
T01	8.1	10.8	295	39.0	310	7.1	13.0	285	26.0	325
т03	7.5	11.2	335	39.0	340	6.1	12.0	335	23.0	325
T05	8.7	11.2	335	39.0	340	7.4	13.0	325	24.0	325
T07	9.2	11.3	305	39.0	310	8.0	13.0	325	25.0	325
т09	9.3	11.2	305	39.0	310	8.3	13.0	315	29.0	325

Tableau 12 : Conditions cycloniques extrêmes, cyclones synthétiques VS historiques

Source : GlobOcéan 2021

5 STRATEGIE DE MODELISATION DE L'ALEA SUBMERSION MARINE

Sur la zone d'étude l'aléa submersion marine, c'est-à-dire les hauteurs maximales susceptibles d'être observées en divers points, sera calculé par modélisations numériques associées aux divers « évènements de référence ».

5.1 TYPE DE MODELE

Pour étudier l'aléa submersion marine, la stratégie de modélisation retenue consiste en la mise en place d'un modèle de courantologie (Telemac2d) dont le domaine de calcul couvre les zones basses alentours potentiellement submersibles. Ainsi le modèle s'étend depuis le littoral vers les zones basses et s'arrête quand l'altimétrie devient plus importante, hors de tout risque de submersion (valeur provisoire retenue : 4 m NGPF/NGT).

Le modèle sera « forcé » sur sa frontière littorale par un signal de niveau d'eau comprenant toutes les composantes du cyclone participant à la submersion (voir 1.4.1 et 1.4.3). Deux scénarios seront proposés, un avec la prise en compte d'une élévation du niveau de la mer de +60cm liée au changement climatique (scénario long terme), l'autre sans (scénario court terme).

Dans un premier temps, une zone test a été définie afin de valider la stratégie de modélisation sur la base d'un exemple concret. Cette zone test se situe sur la passe Vaiare à Mooréa, comme présenté Figure 27.

Source : BRLi 2021

5.2 MAILLAGE

Le maillage est une étape importante dans la construction d'un modèle. Il s'agit de bien représenter les phénomènes locaux tout en limitant le nombre de nœuds au total pour avoir un temps de calcul raisonnable.

Des mailles plutôt fines sont utilisées pour le modèle de submersion, toujours en cohérence avec les géométries à représenter :

- De manière générale, 5-10m pour la plupart des structures à représenter
- 10m sur les zones urbaines
- 10m sur les cours d'eau
- 5m pour la crête de la barrière de corail
- 25m pour le platier corallien
- 50 m dans la baie
- 100m au large

La Figure 28 suivante présente le rendu du maillage sur la zone test et la Figure 29 montre des détails du maillage sur des zones plus précisément modélisées.

Figure 28 : Maillage sur la zone test de Vaiare

Source : BRLi 2021

Figure 29 : Détails du maillage sur la zone test

Source : BRLi 2021

5.3 LOGICIEL

TELEMAC 2D

Le logiciel TELEMAC-2D appartient au système de modélisation en éléments finis TELEMAC, développé initialement par le Laboratoire National d'Hydraulique d'EDF et actuellement par un consortium qui comprend les entités suivantes : EDF, CEREMA, BAW, laboratoire de Daresbury, HR Wallingford et Artélia.

TELEMAC regroupe un ensemble de logiciels dédiés aux problèmes de mécanique des fluides de l'environnement : courantologie bi et tridimensionnelle, houle, sédimentologie, qualité d'eau.

Les principaux avantages que présente le système TELEMAC en regard de la présente étude sont les suivants :

- Le terrain est représenté par un assemblage d'éléments triangulaires de tailles et de formes variables formant le maillage de calcul. Cette technique « éléments finis » procure trois avantages essentiels :
- Le maillage épouse avec fidélité les géométries complexes que l'on rencontre dans la nature : les côtes rocheuses, les îles éventuelles et les chenaux creusés dans les vasières sont ainsi représentés avec précision,
 - elle autorise de densifier le maillage,
 - et donc d'affiner les résultats fournis par le modèle dans les zones d'intérêt.
 - L'outil de génération de maillage intégré au système TELEMAC adapte la densité du maillage à différents critères comme la profondeur ou la pente des fonds. Il réalise un compromis entre les besoins en précision dans les régions où l'hydraulique est complexe (estrans, berges d'un chenal, etc.) et le nombre total de points. Cette caractéristique est essentielle pour maintenir au modèle son caractère opérationnel en termes de précision et de temps de réponse.
- Tous les modules du système sont fondés sur la méthode des éléments finis. Ils partagent la même architecture, les mêmes structures de données et la même chaîne de traitement. Ils présentent donc une grande compatibilité et le transfert de données d'un code à l'autre est facile.

Utilisé par de nombreux centres de recherche et bureaux d'étude dans le monde, TELEMAC figure actuellement parmi les outils les plus performants du marché.

Le logiciel TELEMAC-2D résout les équations de Barré de Saint-Venant à deux dimensions d'espace horizontal. Ses résultats principaux sont, en chaque point du maillage de résolution, la hauteur d'eau et la vitesse moyenne sur la verticale.

TELEMAC-2D trouve ses applications en hydraulique à surface libre, maritime ou fluviale et est capable de prendre en compte les phénomènes physiques suivants :

- Propagation des ondes longues avec prise en compte des effets non linéaires,
- Frottement sur le fond,
- Influence de la force de Coriolis,
- Influence de phénomènes météorologiques : pression atmosphérique et vent,
- Turbulence,
- Ecoulements torrentiels et fluviaux,
- Influence de gradients horizontaux de température ou de salinité sur la densité,
- Coordonnées cartésiennes ou sphériques pour les grands domaines,
- Zones sèches dans le domaine de calcul : bancs découvrant et plaines inondables,
- Entraînement par le courant et diffusion d'un traceur, avec des termes de création ou de disparition,
- Suivi de flotteurs et dérives lagrangiennes,
- Traitement de singularités : seuils, digues, buses,
- Prise en compte des forces de traînée des structures verticales,
- Prise en compte des phénomènes de porosité,
- Prise en compte des courants de houle (par couplage avec les modules ARTEMIS et TOMAWAC).

XBEACH

De plus, un contrôle sera réalisé sur les zones à la morphologie particulière, par exemple derrière les motus, avec le logiciel de modélisation XBeach via des profils 1DH (voir Figure 31).

Figure 30 : Exemple de profil XBeach 1DH

Développé dernièrement sous utilisation libre et déjà largement éprouvé, XBeach est un modèle en 2DH (moyenné sur la profondeur) qui calcule les réponses côtières et littorales en fonction du temps. Ce modèle convient bien au calibrage de la présente étude, car il résout en parallèle des équations mettant en jeu l'énergie des ondes courtes, l'écoulement et la génération des ondes infragravitaires, et des équations de propagation des vagues.

XBeach résout l'équation d'équilibre d'action des ondes courtes à l'échelle des groupes de vagues, en fonction du temps (cf. Figure 30). Les élévations de surface et les écoulements, y compris les ondes infragravitaires et les courants instables induits par les vagues, sont résolus à l'aide d'équations d'équilibre de masse et moment en eau peu profonde. Afin d'inclure les flux de masse induits par des ondes courtes et les retours de flux d'eau dans l'équation appliquée en eau peu profonde, le modèle utilise la formulation de la « Moyenne Lagrangienne Généralisée ».

Source : Laboratory tests as a complement to teaching in degree, master and doctoral programs in the field of maritime engineering, Bergillos et al, 2017

Source : XBeach user manual, Deltares, 2020

5.4 FORÇAGE, CALAGE, TEST DE SENSIBILITE ET CONTROLE

Le forçage de la zone test est réalisé avec l'évènement de référence du point M06. Ce point a été retenu car l'aléa de référence attaché présente une configuration plus défavorable que dans le cas du point M04.

Les paramètres de forçage retenus aux limite du modèle sont ainsi :

- Pour la houle :
 - Hm0 = 8.9m
 - Tp = 11.2s
 - Dirp = 305°
- Pour le vent maximal
 - Ws = 39 m/s
 - Dirw = 310°
- Pour les niveaux d'eau
 - +0.332m de marée astronomique (basé sur la PHMA convertie en NGPF, cf. section 1.2.2.2)
 - +0.53 cm de surcôte atmosphérique (pression à l'oeil de 960hpa)
 - +0.60 cm d'élévation du niveau de la mer

Les résultats obtenus suite à la modélisation seront validés et calibrés avec d'une part la comparaison avec les profils XBeach 1DH et d'autre part avec les résultats obtenus par le BRGM dans la cadre de l'étude ARAI 3.

Les calculs avec ce « modèle test » sont en cours (au 2/07/21). Les résultats seront présentés et discuté lors de la réunion de restitution de la phase 1 programmée le 6/07/21.

ANNEXES

Annexe 1. Liste des cyclones historiques de la Polynésie Française

Source : https://cyclonextreme.com/cyclonecaledoniesystmemo.htm

Date	Туре	Pression	Observations
21 & 22 décembre 1831	Cvclone	-	Celui ci ravage les îles Cook du Sud et se manifeste par sa bordure orientale jusque sur les îles Sous le Vent
21 décembre 1843	Dépression tropicale forte		Qui a probablement atteint le stade de cyclone affecte les îles Sous le Vent. 4 morts à Raiatea
			Gros dégats à Maupiti, Tahaa, Huahiné et Bora où la mer aurait atteint le pied de la montagne
22 janvier 1856	Depression tropicale	-	Sur Tahiti, de gros arbres sont deracines et la mer envahit le rivage D'importante décate aux îles Sous le Vent à Tabiti surtout de Punaquia à Mataica et aux Australes
2 février 1865	ou Cyclone	-	Un ou deux villages submergés et anéantis par la marée de tempête à Tubai
18 & 19 janvier 1877	Dépression tropicale	-	Sur la Société et les Tuamotu
6 & 7 février 1878	Cyclone	-	117 victimes au Tuamotu de l'Ouest et de gros dégats
février 1883,	2	_	Maréas da tempâta
& 16 mars 1889		_	
22-déc-01	Dépression tropicale	-	Sur Tahiti, mer déchainée envahissant le rivage et détruisant une grande partie des quais de Papeete
14 & 15 janvier 1903	Cyclone	-	517 victimes au Tuamotu Nord & Centre, la plupart emportée par la marée de tempête,
,			plusieurs bateaux detruits Du Nord des Tuamotu à l'est de Tabiti, sur les Tuamotu Nord gros dégats & 8 victimes, 175 maisons détruites
23 au 26 mars 1905	Cyclone	-	A Tahiti dégats matériels sur la côte est
			Cyclone en provenance du nord-ouest passant entre Tahiti et les Tuamotu et se dirigeant ensuite
6 au 8 février 1906	Cyclone	-	vers les Gambier. Les dégats furent considérables et surtout aux Tuamotu où de nombreux villages
1 au 3 ianvier 1926	Dépression tropicale	-	turent rases par le vent et la mer. L'on denombra en tout 150 victimes
6 au 12 février 1937	Dépression tropicale	-	En provenance des Cook du Sud elle traverse les Australes avec un vent fort et une mer démontée à Tubai
6 au 8 février 1940	Dépression tropicale	-	Passe entre Tahiti et les Asutrales. Une très forte houle entre dans le port de Papeete le 9
29 au 31 décembre 1940	Dépression tropicale forte	-	Passe au Nord de Tahiti où le vent d'est à nord-est a soufflé à plus de 90 km/h
16 au 18 janvier 1941	Dépression tropicale forte	-	Passe a l'ouest de Tahiti. Il y a des degats importants occasionnes parle vent et la mer demontee a Uturoa et surtout à Bora Bora (vent supérieur à 95 km/h) Disparition de la goélette Tereora qui se rendait à Bajatea
15 au 17 février 1947	Dépression tropicale	-	Probablement faible, passe sur la Société avec quelques dégats à Tahiti où le vent maximal atteint 85 km/h
4 au 7 ianvier 1955	Dépression tropicale faible	_	Formée au voisinage des îles sous le Vent s'éloigne vers les Cook du Sud
			Le vent atteint 75 km/h à Mopelia où la mer est très forte
10 au 12 mars 1055	Dépression tropicale forte		Eile apparait trioderee au sud de la Societe puis devient forte en passant à l'ouest de Rimatara dans la nuit du 11 au 12 Le vent moven atteint 90 km/h et les rafales dénassent les 100 km/h è Rurutiu
			où la mer est très grosse
18 au 21 novembre 1956	Dépression tropicale faible	_	Formée près des îles Cook du Sud le 18 passe au nord des Australes le 20 et près de Rapa le 21
			Les rafales dépassent 75 km/h à Rurutu
19 au 21 ianvier 1958	Dépression tropicale		Formee au nord de Huanine le 19, elle passe entre Makatea et Taniti, puis de deplace rapidement vers le sud-est Le vent moven de nord-ouest atteint 70 km/h avec des rafales dénassant les 80 km/h à Makatea
	Depression ropicale		et la houle de nord-ouest atteint une hauteur de 5 à 7 mètres
			Elle passe à l'ouest de la Société puis sur Rurutu. Le vent moyen atteint 95 km/h à Bora Bora avec des pointes
26 au 28 janvier 1959	Dépression tropicale forte	-	à 115 km/h. Le Jeanne d'Arc a proximité enregistre des rafales à 145 km/h avec une mer grosse
09-japy-60	Dépression tropicale faible		et tres houleuse. La passe de Papeete est impraticable du 27 au 29 Affecte les Tuamotu du Nord-Quest et la Société Les pointes de vent atteignent 100 km/b à Makatea
		-	Affecte la Société et le Nord des Tuamotu. A Makatea le vent moyen atteint 80 km/h avec des rafales
6 au 8 fevrier 1960	Depression tropicale moderee	-	à près de 100 km/h. On observe une forte houle de nord de plus de 4 mètres de hauteur
9 au 13 mars 1961	Dépression tropicale modérée	-	Passage sur le nord des Tuamotu et de la Société. A Bora Bora les rafales de vent dépassent les 100 km/h
			avec des vents moyens de 75 km/n et une mer tres grosse Se déplace très rapidement du nord-est des îles Cook du Sud, où elle s'est formée, à l'est des Australes
23 au 31 janvier 1966	Dépression tropicale modérée	-	et au voisinage de Rapa avec des vents moyens de 75 km/h
1 au 4 décembre 1966	Dépression tropicale	-	Se forme au nord des Australes, puis traverse l'archipel en donnant des rafales de 60 km/h à Tubuai
			Un cyclone non nommé, ayant pris naissance vers le 10 au voisinage des Iles Elice traverse l'archipel des Cook
16 au 20 décembre 1967	Cvclone	-	le 18 en soirée. Les vents dans cette île sont estimés à 160 km/h. La houle cvclonique a provoqué la montée
	<u>- ,</u>		des eaux de nombreux lagons notamment ceux dont les passes s'ouvrent au sud-ouest et à l'ouest.
			Seules les Marquises et les Tuamotu du Nord ont été épargnés par cette houle
2 ou 7 more 1069	Dépression tropicale faible		Formée au voisinage des lles sous le Vent vient à proximité de Hereheretue puis infléchit sa trajectoire vers.
3 au 7 mais 1900	Depression tropicale faible	-	à Tubai
21 au 25 janvier 1970	Dépression tropicale faible	_	Occassionne quelques dégats sur des atoolls de l'ouest des Tuamotu. Le vent moyen est de 60 km/h
21 au 25 janvier 1970	Depression tropicale laible		avec des rafales de 75 km/h à Hereheretue
20 au 24 février 1970	Cyclone tropical Dolly	950	Né dans l'ouest des Nouvelles Hébrides passe au sud-ouest des Australes le 23 puis à proximité sud de Rapa. Seule la houle produite par ce cyclone a causé quelques dégats en Polynésie Française
			Emma a pris naissance dans le nord des Cook du Sud et passe le 2 mars à proximité du sud-ouest de Mopélia.
			Le 3 mars en début de journée elle se situe à proximité de Rurutu puis à moins de 90 km dans le sud-ouest
27 février au 5 mars 1970	Cyclone tropical Emma	950	de Tubai et enfin le 5 mars au sud de Rapa. La montée des eaux provoquée par ce cyclone atteint 3 mètres
			a Rurutu (reau a penetre par endrons jusqu'à 400 metres à l'interieur des terres), 2 à 3 metres à l'udai, 2 mètres à Bora et 1 mètre à Tabiti. Des pointes de vent de 120 km/h ont été enregistrés à Monélia
			de 160 km/h à Tubai et de 170 km/h à Rurutu. Les dégats ont surtout affecté les Australes
16 au 19 décembre 1971	Dépression tropicale modérée	990	Trajectoire voisine du cyclone Emma
16 more 74	Vivienne Déproceion tropicele Stalle		Elle a donné des vents de 90 à 95 km/h sur Tubai
10-mars-74			Se forme sur le Nord des Gambiers et se déplace vers l'ouest sud-ouest et atteint le stade de cvclone
2 au 6 février 1976	Cyclone tropical Frances	950	après son passage sur les Australes. Les vents ont atteint en pointe 105 km/h à Moruroa
11 au 12 décembre 1976	Dépression tropicale forte Laurie	980	Un couple de dépressions tropicales, Laurie & Kim viennent mourrir entre les Cook du sud
11 au 12 décembre 1070		000	et les Australes
TT au 12 décembre 1976	Depression tropicale forte Kim	980	Elles se sont formées ion dans rouest du Pacifique Formé au sud des îles de la Ligne, il passe à l'ouest de Mopélia puis au Nord des Australes et au sud
			des Gambiers. Aux stations météorologiques de la Société, des Australes, du sud des Tuamotu et
15 au 21 avril 1977	Cyclone tropical Robert	950	des Gambiers les vents n'ont pas dépassé 65 km/h et il n'y a pas eu de dégats
	<u></u>	500	Pourtant un sloop s'est fracassé sur l'atoll de Scilly le 17 (les vents auraient été supérieurs à 100 km/h) et la goélette Arij Magna a fait état de graux de 10 à 11 mètres entre Tabiti et les Australes le 20 l'abliggert
			à se délester d'une partie de sa cargaison et à rebrousser chemin
6 au 10 décembre 1077	Dépression tropicale modérée	000	Née au sud-est de Penrhyn, à la trajectoire très septentrionnale elle passe entre Takaroa et Puka Puka,
o au to decembre 1977	Tessa	390	puis au nord de Reao. Le vent moyen n' a pas dépassé les 70 km/h
			Se forme au large nord-ouest des îles sous le Vent. Elle se déplace vers l'est sud-est en passant à proximité sud de Monélia, reprousse chemin vers le sud-quest à con arrivée au sud de Reistee suis sesse à l'auest
16 au 20 février 1978	Dépression tropicale forte Diana	980	de Rimatara et incurve ensuite sa traiectoire vers le sud-ouest a son annivee au sud de Rahatea puis passe à nouest de Rimatara et incurve ensuite sa traiectoire vers le sud-est. De nombreux décats aux îles Sous le Vent.
			Mopélia a enregistré un vent de 90 km/h avec des rafales à 115 km/h
			Très puissant formé dans l'ouest des Cook Sud a décrit 2 boucles dans cet archipel en se creusant entre
16 au 27 février 1978	Cyclone tropical Charles	950	le 18 & 23. Les vents moyens ont atteint 115 km/h pendant plusieurs jours en diverses stations
			passé au large ouest des Australes. Des rafales de 80 km/h ont été enreiostrés à Monélia
21 au 23 février 1980	Dépression tropicale Leslie		Circule très à l'ouest des archipels polynésiens
			Elle se forme au nord de l'archipel des Tuamotu et se creuse rapidement en se décalant vers l'est sud-est.
27 au 28 novembre 1980	Dépression tropicale modérée Diola	990	Elle atteint son intensite maximale lorsque sa trajectoire s'oriente vers le sud-ouest avec des vents de tempête atteignant les 115 à 120 km/b en rafale sur les atolls des Tuamotu du sud-est. Elle s'enfonce

27 au 28 novembre 1980	Dépression tropicale modérée Diola	990	de tempête atteignant les 115 à 120 km/h en rafale sur les atolls des Tuamotu du sud-est. Elle s'enfonce
			ensuite dans l'est de Rapa tout en perdant de sa vigueur. Les dégats constatés sont minimes, malgré le fait
			que la partie est de l'atoll de Moruroa soit submergée sous l'effet d'une grosse mer
			Formé dans le parages des Cook du Sud, la dépression évolue vers l'est autour du 20ème parallèle Sud.
			C'est lorsque sa trajectoire s'incurve vers l'est sud-est en passant au sud de l'archipel de la Société
			qu'il atteint l'intensité d'un cyclone. Ensuite conservant sa direction sud-est, il s'accèlère et perd
			de ses caractérisitiques tropicales après être passé au nord-est de Rapa.
9 au 13 mars 1981	Cyclone tropical Tahmar	950	Sur la Société les vents moyens ont atteint 75 km/h avec des rafales à 110 km/h, sur les Australes et
			les Tuamotu vents de 65 km/h. Compte tenu de cette trajectoire particulière, houle et vent d'ouest
			à nord-ouest, associées localement à une marée de tempête ont submergé les rivages des atolls d'Anaa
			de Hereheretue et de Moruroa, détruisant ouvrages côtiers et maisons Sur la Société les dégats sont
			importants et en partie liés aux fortes précipitations qui accompagnent Tahmar
		980	Une perturbation tropicale est observée dans les parages nord de Aitutaki le 18 mars, en dérivant doucement
			vers le sud-est il se creuse et devient une dépression tropicale faible le 20, se rapprochant des îles Sous le Vent. Baptisée Fran, elle
			s'intensifie encore tout en accélérant au cap au sud-est balayant Rurutu et croisant
20 au 23 mars 1981	Dépression tropicale forte Fran		au proche sud-ouest de Rapa avant de disparaitre.
			En pointe les vents mesurées ou estimés atteindront 130 km/h au voisinage des Australes
			A cette occasion on observe à Rurutu une marée de tempête et c'est sur cette île que les dégats matériels
			sont les plus importants
			Formée et circulant dans un couloir dépressionnaire qui va des Cook du Nord à la Société, LISA évolue en dépression tropicale forte en
		975	se rapprochant des île Sous le Vent. Elle passe non loin de Maupiti engendrant
11 au 14 décembre 1982	Dépression tropicale forte Lisa		sur tout l'archipel 80 à 90 km de vent moyen et près de 115 km/h en rafale ainsi qu'une marée de tempête.
			Il y a 2 victimes. A Tahiti beaucoup de vent et de pluie et de nombreux dégats matériels sont observés.
			Lisa tourne vers l'ouest et s'affaiblit rapidement entre les Cook du sud et les Australes. Lisa est le type
			même de la dépression dont la trajectoire est très dangereuse pour l'archipel de la Sociétédans son ensemble

CARACTERISATION DE L'ALEA SUBMERSION MARINE D'ORIGINE CYCLONIQUE VIA LES DONNEES LIDAR A TAHITI, MOOREA ET BORA BORA Phase 1 – Etat des lieux

Date	Туре	Pression	Observations
		mmale	Nano traverse l'est de la Polynésie, des îles Marquises aux Gambier, dévastant au passage plusieurs atolls
20 - 27 janvier 1983			de l'archipel des Tuamotu, notamment Hao et Tureai. Il faut remonter plus de 75 ans en arrière pour retrouver
	Cyclone tropical Nano	070	sur l'archipel des Marquises au début de son existence, par une intensité
20 - 27 janvier 1983		970	de cyclone (vents 117 km/h et rafales de 160 km/h) au cours de sa traversée de l'archipel des Tuamotu.
			Les villages et les intrastructures sont detruites. Touterois il n'y à pas eu de victimes maigre une mer submergeant les lies basses Nano est tout à fait typique par sa trajectoire et son intensité du bouleversement climatique
			de la saison chaude 1982/83 (événment El Nino fort)
21 au 27 février 1983	Dépression tropicale modérée	987	Une dépression tropicale qui circule sur les Cook du Nord, sans conséquence importante du fait
			Formée entre les Marquises et les Tuamotu, une dépression tropicale atteint très rapidement le stade
			du cyclone tropical le 22, alors qu'elle évolue au milieu de l'archipel des Tuamotu
22 au 27 février 1983	Cyclone tropical Nisha/Orama	925	Baptisée Orama ou Nisha par le centre de Nandi c'est le phénomène le plus meurtrier (1 mort & 5 disparus dans le naufrage d'une goélette) le plus destructeur qui ait touché les Tuamotu du Nord et de l'Ouest après
			le cyclone de 1906 qui détruisit Anaa. Orama est remarquable par son intensité et sa trajectoire très
			tourmentée au milieu de son existence
			et 3 disparus ainsi que des dégats matériels considérables. De même origine que son prédécesseur Orama.
6 au 14 mars 1983	Cyclone tropical Rewa	925	l est remarquable par son brusque changement de trajectoire au nord des îles Sous le Vent ainsi que par
			l'effet secondaire qu'il a engendré sur les côtes ouest et nord-ouest de Tahiti (effet de foehn très violent),
40	D'anna is traite la farte Oaka	005	Une tempête qui évolue à l'est des Marquises et de l'archipel des Tuamotu-Gambier, heureusement sans
19 au 22 mars 1983	Depression tropicale forte Saba	985	grande conséquence. La longitude moyenne de sa trajectoire (135 à 130° Ouest) est remarquable
27 mars au 2 avril 1983	Cyclone tropical Tomasi	925	Une dépression tropicale dont l'origine se situe dans la région de Penrhyn (Cook du Nord) se creuse le 29 et atteint alors le stade de cyclone tropical. Bantisé Tomasi il amorce un recourbement vers le sud-est
27 mars au 2 avril 1900		525	après avoir frolé l'ile de Niue, il disparait au sud
			Encore une dépression qui se forme dans le voisinage de l'archipel des Marquises et qui adopte une trajectoire parabolique classique
			avec une intensite maximale au voisinage du recourbement de sa trajectoire. Il ravage le nord-ouest des Tuamotu, l'archipel des iles du Vent (il passe à 50 km à l'est de Tautira) et l'atoll de
7 au 13 avril 1983	Cyclone tropical Veena	925	Hereheretue qui sera totalement submergé par la marée de tempête. A cette occasion on enregistre
7 au 15 aviii 1565		525	162 km/h en rafale de sud-ouest à Faa avant que l'installation anémométrique ne soit hors d'usage.
			aucune victime. Veena restera gravée dans la mémoire des tahitiens pour très longtemps.
			Images de l'après Veena fonds ICA (merci à Marc E. Louvat)
			Formé plus à l'est que Veena, mais toujours au coeur de la zone de basse pression marquisienne qui a duré toute la saison, le cyclone tropical William énargne de peu l'atoll de Hao, mais dévaste d'autres atolls délà
15 au 21 avril 1983	Cyclone tropical William	955	très éprouvés par le cyclone Nano en janvier. Les effets de la mer (houle cyclonique & marée de tempête)
			ont encore constitué le danger majeur pour les insulaires William a fait une victime
10 au 14 mai 1983	Dépression tropicale Xena	-	Evolue tres a l'est du domaine polynesien (autour de 115° Ouest !) ioin de tout archipel Cette dépression tardive et vraiment exotique n'atteint pas une grande intensité
4 au 8 février 1986	Dépression tropicale forte June	984	Sa trajectoire est tendue vers le sud-est et ce n'est qu'au sud du tropique du Capricorne qu'elle atteint
		001	son intensité maximale Formée au sud des Samea la dénression transcale. Ima se transforme ranidement en systeme auent d'aborder.
	Cyclone tropical Ima	007	les Cook du sud dans une trajectoire très tendue vers l'est sud-est. A la longitude de Tahiti après avoir franchi
6 au 15 fevrier 1986		967	le 20ème parallèle Ima effectue une boucle très originale qui inquiète quelque peu les habitants de la Société
28-déc-86			et surtout Rimatara où les dégats sont très importants Il évolue pendant 8 iours à l'ouest et au sud-ouest de la Polynésie française. Anrès avoir dévasté les Cook
au 5 février 1987	Cyclone tranical Sally	055	du Sud, en particulier sa capitale Rarotonga, et poursuivant sa route vers le sud-est, il passe au large des
		955	îles Australes n'y causant que des dégats mineurs. A noter à cette occasion la valeur mesurée de 5 mètres
15 au 22 ianvier 1987	Cyclone tropical Tusi	955	pour la maree de tempete a Rarotonga Originaire des Samoa le cyclone est resté tout au long de son existence aux frontières ouest de la Polvnésie
1er au 8 mars 1987	Cyclone tropical Wini	965	Il prend naissance dans la région des Samoa et passe assez loin de tout archipel Polynésien
			Se forme dans les parages d'Aitutaki (Cook du Sud). Le stade de cyclone est atteint pendant une courte
28 février au 2 mars 1988	Cyclone tropical Cilla	970	150 km/h en rafales. Cilla engendre des vents de plus de 100 km/h sur les Australes et d'intenses
			précipitations se produisent sur la Société causant indirectement la perte de 2 vies humaines,
			A l'origine et à la trajectoire très singulière Hinano évolue dans le sud-est de la Polynésie sans se rapprocher
21 au 28 février 1989	Cyclone tropical Hinano	970	d'îles habitées. Baptisé Hinano de très modeste dimension, elle a pris naissance au sud-est de l'île de Pitcairn mais est toujours restée en
			dessous du 25ème de latitude sud
22 au 27 février 1989	Cyclone tropical Judy	965	De petite dimension le cyclone Judy n'atteint ce stade que durant une brève période lorsqu'il passe au sud
			de l'île de Maigaia. Judy ne cause aucun dommage en Polynésie française
			Il evolue en bordure ouest et sud-ouest de la Polynesie. Il atteint le stade de cyclone au sud du 20eme parallèle après avoir balavé tout l'archipel des Cook. Il croise au large sud des Australes où les vents ont
13 au 17 février 1990	Cyclone tropical Péni	970	soufflé en tempête en causant quelques dégats matériels. Sur l'archipel de la Société en particulier aux îles
			Sous le Vent l'on a aussi éprouvé quelques uns de ses effets indirects coup de vent et fortes pluies
			de l'île de Penrhyn II atteint le stade de cyclone tropical et se dirige vers l'archipel de la Société. Passant
			sur l'atoll de Mopélia dans la matiné du 10 et à 300 km au sud-ouest de Tahiti en soirée, il poursuit sa
5 au 14 décembre 1991	Cyclone tropical Wasa	938	trajectoire vers le sud-est, devenue fort heureusement une dépression tropicale forte le 11 au matin il passe
			à l'est puis au nord-est traverse le sud-est des Tuamotu parvenant jusqu'au nord-est de Reao.
			80 000 personnes sinistrés dans l'archipel de la Société et d'énormes dégats dus essentiellement à la mer
13 au 18 décembre 1991	Dépression tropicale forte Arthur	985	- File affecte le nord quis l'est de la Polynésie française. Anrès avoir dévasté l'atoll de Puka-Puka
E ou 8 féurier 1002	Dépression tranicale farte Cliff		(houle de nord-ouest évaluée à 4-5 mètres) sur l'est des Tuamotu dans la matinée du 6, elle poursuit
5 au 6 leviler 1992	Depression tropicale forte clim	960	sa route vers le sud-est en causant des dégats sérieux aux atolls de la région. Le 8 au matin elle quite
			les eaux polynesiennes Née à proximité nord de Rangiroa, sur le nord des Tuamotu elle traverse la Polynéise du nord-ouest au sud-est, sans affecter directement
24 au 28 mars 1992	Depression tropicale forte Hettie	987	les nombreux atolls de la la région
30 décembre 1994 au			Elle se développe au nord-ouest de Souvarof aux îles Cook et évolue vers le sud-est traversant le sud de l'archipel. Elle atteint ensuite l'archipel des Australes qu'elle traverse rapidement poursuivant sa trajectoire.
04-janv-95	Dépression tropical forte William	976	vers le sud-est en passant aux abords ouest de l'île de Rapa. De sérieux dégats dus au vent et à la mer
04			sont occasionnés aux Australes
07-nov-97	1		d'importants dégats dans cet archipel il se dirige en droite ligne vers les îles Sous le Vent. basse sur l'atoll
	Cyclone tropical Martin	944	de Mopélia puis à environ 270 km de Tahiti. Poursuivant sa route vers le sud-est en perdant lentement
			de sa vigeur il passe à l'est des Australes. Martin est responsable de la mort de 9 personnes sur l'atoll
		954	Il prend naissance aux abords sud de l'île de Penrhyn puis évolue en direction des îles Sous le Vent qu'il
	Cyclone tropical Osea		affecte directement dans l'après midi du 25 en passant sur l'île de Maupiti. Poursuivant son lent déplacement
21 au 27 novembre 1997			vers le sud-est il vient stagner quelques neures a 250 km environ au sud-ouest de Tahiti où il se comble rapidement. Il reprend ensuite sa trajectoire vers le sud-est passant au nord des Australes puis à l'est
			de Rapa. D'énormes dégats à Bora Bora (30% des infrastructures endommagées), Maupiti
			(95% de l'île fut détruite) et Raitea
		1	du 30 ianvier alors au'elle se trouve au sud de Maketa elle décrit une traiectoire au sud-est longeant

30-janv-98	Depression tropicale forte Ursula	976	a bordure sud-ouest de l'archipel des Tuamotu en passant au plus pres des atolis de Anaa et Moruroa.			
			Elle ne reste tempête tropicale forte que quelques heures en tout début du 31 janvier avant d'amorcer			
		1	son comblement et de quitter la Polynésie dans le sud des Gambier dans la soirée			
01 au 03 février 1998	Cyclone tropical Veli	967	A traversé l'archipel des Tuamotu			
			Après être resté quasi stationnaire Alan prend sans s'intensifier une trajectoire est sud-est vers l'archipel			
			de la Société. Dans l'après midi du 23 alors qu'elle se trouve à environ 800 km dans le nord-ouest de Bora Bora Alan amorce son			
22 ou 26 ovril 1008	Dépression tranicala madérée Alan	001	comblement . Cependant le panache d'altitude donnera des pluies très fortes sur les îles			
22 au 26 avril 1996	Depression iropicale moderee Alan	991	Sous le Vent provoquant des éboulements de terrains mortels dans la nuit du 24. Dans la périphérie d'Alan			
			de forts coup de vent d'une durée comprise entre 5 minutes et une demi-heure (tornades) ont provoqué d'énormes dégats de Bora Bora, à			
		996	Raitea, Tahaa puis à Huahiné. Il y aura 8 morts au total			
			Elle prend naissance le 27 avril dans le triangle délimitée par les atolls de Takaroa, Hao et Puka Puka.			
29 avril au 1 mai 1998	Dépression tropicale modérée Bart		Faisant lentement route vers l'est elle est baptisée Bart en début de matinée du 29			
			Au cours des heures qui suivent Bart infléchit sa trajectoire vers le sud-est tout en s'intensifiant			
			Dans la nuit du 29 Bart passera à proximité de Reao. Dès le lendement la convection profonde se			
			désolidarisera de la dépression de surface preuve du comblement du phénomène			
25 au 29 février 2000	Cyclone tropical Kim	944	désolidarisera de la dépression de surface preuve du comblement du ptén previe Quelques dégats à Rikitea, Vents à 137 km/h à Rapa Passe sur Mangareva, record de vent battu avec 119 km/h et record de pluie de 182 litres/m2 en 24 heures			
1 au 5 mars 2001	Dépression tropicale modérée Rita	994	Passe sur Mangareva, record de vent battu avec 119 km/h et record de pluie de 182 litres/m2 en 24 heures			
22 27 décembre 2004	Dépression tropicolo modérée, ludy	090	Aucun dégat n'a été signalé sur les îles Hereheretue et Ravaivae, près desquelles le centre du phénomène			
23 - 27 decembre 2004	Depression tropicale moderee Judy	909	est passé (Vents moyens de 43 knots & rafales à 72 knots mesurés à Herheretue)			
			A Raivavae, les rafales de vents ont arraché des branches d'arbres. La forte houle a endommagé des routes			
2 8 féurier 2005	Cyclone tranical Magna	Elle ne reste tempête tropicale forte que quelques h son comblement et de quitter la Polynésie I Veli 967 A traversé l'archip Odérée Alan 991 Après être resté quasi stationnaire Alan prend sans s' de la Société. Dans l'après midi du 23 alors qu'elle se trouve à env comblement . Cependant le panache d'altitude Sous le Vent provoquant des éboulements de terrains n de forts coup de vent d'une durée comprise entre 5 minutes et une der Raitea, Tahaa puis à Huahine Elle prend naissance le 27 avril dans le triangle délin Faisant lentement route vers l'est elle est b Dans la nuit du 29 Bart passera à proximité de Re désolidarisera de la dépression de surface dérée Rita 1 Kim 944 Quelques dégats à Rikitea, ' Dans la nuit du 29 Bart passera à proximité de Re désolidarisera de la dépression de surface désolidarisera de la dépression de surface désolidarisera (extent battu avec 119 ko dérée Rita 994 Passe sur Mangareva, record de vent battu avec 119 ko dérée Judy 989 Aucun dégat n' a été signalé sur les îles Hereheretue e est passé (Vents moyens de 43 knots & ra forte Zita 915 A Raivavae, les rafales de vents ont arraché des branch et provoqué une montée des eaux dans le lagon et quelques innondatio provoqué la chute d'arbres. La houle a de l'île not de l'île not 1 Oli 925 Sur l'ensemble de l'archipel, le Haut-commissariat I d'ans l'archipel des Îles Sous le Vent : Bora Bora, Maupit	et provoqué une montée des eaux dans le lagon et quelques innondations. A Tubai les rafales de vents ont endommagé quelques maison et			
2 - 8 leviler 2005	Cyclone tropical Meena		provoqué la chute d'arbres. La houle a durement frappé le littoral au nord			
			de l'île notamment			
17 au 26 janvier 2007	Dépression tropicale forte Zita	975	A l'ouest des îles Sociétés			
21 au 28 janvier 2007	Dépression tropicale forte Arthur	975	Pluies torrentielles sur Moorea et Tahiti, plusieurs maisons détruites à Tubai			
		925	Sur l'ensemble de l'archipel, le Haut-commissariat faisait état d'un bilan d'un mort, un blessé grave,			
01 - 07 février 2010	Cyclone tropical Oli		six blessés légers, 4.813 personnes évacuées et 374 habitations détruites ou endommagées, dont la majorité			
			dans l'archipel des Îles Sous le Vent : Bora Bora, Maupiti, Raiatea, Tahaa et Huahine, mais également à Tubai			

CARACTERISATION DE L'ALEA SUBMERSION MARINE D'ORIGINE CYCLONIQUE VIA LES DONNEES LIDAR A TAHITI, MOOREA ET BORA BORA Phase 1 – Etat des lieux

Annexe 2. Mesures satellitales

Le capteur altimétrique fournit une valeur moyenne de Hm0 et de vitesse de vent pour chaque segment de 7 km (correspondant à 1 seconde de vol) le long de la trace au sol du satellite défilant qui le supporte.

Ces capteurs ont bénéficié de campagnes de calibration, menées sur le long terme, à l'aide d'un réseau mondial de bouées de mesures d'états de mer et de vent. Les mesures réalisées, une fois la correction appliquée, sont d'une très grande qualité.

Les bases de données altimétriques suivantes, ont été fournies à GlobOcean par l'Ifremer, sur une couverture mondiale :

Toutes ces données, qui couvrent aujourd'hui la surface de l'océan avec une forte densité, peuvent aisément être sélectionnées sur une zone d'étude spécifique et corrigées des coefficients de calibration déterminés. Elles peuvent ainsi être utilisées pour définir des climatologies météoocéaniques fiables (au large), assimilées dans un modèle en point de grille ou utiles pour l'analyse d'évènements spécifiques (tempête, cyclone).

Annexe 3. Modèle WAVEWATCH III

WaveWatch III est un modèle d'états de mer de 3ème génération, en point de grille (concept WAM).

WaveWatch III a été développé à l'Ocean Model Branch' du 'National Centers for Environmental Predictions' (NCEP), dans la continuité des projets Wavewatch-I et WavewatchII développés respectivement au 'Delft University of Technology' et au 'NASA Goddard Space Flight Center'.

WaveWatch III diffère de ses prédécesseurs sur de nombreux aspects majeurs : les équations de modélisation, la structure du programme, et les approches numériques de résolution. Il peut prendre en considération des éléments supplémentaires tels que la bathymétrie et les interactions avec le courant.

L'équation de balance de l'évolution des spectres d'états de mer est basée sur la conservation de l'action A (k, Θ , x, t) = E (k, Θ , x, t) / σ , où σ est la pulsation. La modification du champ de vague est alors décrite par l'équation :

DA (k, Θ , x, t)/Dt = S (k, Θ , x, t)/ σ ,

où D/Dt représente la dérivée totale (variation temporelle et propagation spatiale), et S représente le bilan net des termes sources et puits pour le spectre E.

Parce que la partie gauche de l'équation est traditionnellement dédiée à la propagation linéaire, les effets non linéaires (interactions vague-vague) sont regroupés sous S.

Le terme source se décompose de la manière suivante :

S = Sin + Snl + Sds + Sbot

Sin représente l'interaction vent-vague (forçage atmosphérique), Snl est l'interaction non linéaire vague-vague, Sds représente la dissipation de l'état de mer, et Sbot l'interaction avec la bathymétrie.

L'équation générale de modification de l'état de mer est résolue par différences finies sur une grille recouvrant le Domaine d'intérêt.

Source : https://polar.ncep.noaa.gov/waves/wavewatch/

Annexe 4. Modèle SWAN

Le logiciel SWAN (version 41.20AB) ('Simulating Waves Nearshore') développé par l'Université de Technologie de Delft est aussi un logiciel basé sur l'équation d'action d'onde qui décrit la propagation de la houle.

Ce logiciel permet une meilleure reproduction des phénomènes physiques liés à la propagation des vagues le long des côtes : diffraction, réflexion, réfraction, déferlement et shoaling.

La propagation des vagues est décrite par l'équation :

DN / Dt = S / σ

Où N est la densité spectrale en m/s2, σ est la pulsation en rad/s et le terme source S représente la somme des pertes et des gains en énergie durant la propagation de la houle et peut se décomposer de la manière suivante :

S = Sin + Snl3 + Snl4 + Sds, w+Sds, b + Sds, br

- Sin : Interaction du vent sur les vagues (forçage atmosphérique)
- Snl3 : Interaction non linéaire vagues à vagues (triads)
- Snl : Interaction non linéaire vagues à vagues (quadruplets)
- Sds, w : Whitecapping
- Sds, b
 : Interaction de la bathymétrie sur les vagues
- Sds,br : Dissipation par le déferlement en eau peu profonde

Le maillage utilisé pour les calculs à faibles profondeurs doit être assez fin. Aussi, l'équation d'action d'onde est résolue grâce à la méthode des différences finies par un schéma explicite en espace. Le schéma utilisé pour la discrétisation en temps est la méthode d'Euler implicite. Ces méthodes de résolution permettent au logiciel SWAN d'être robuste, précis, rapide et de converger correctement.

Les modèles associés aux grilles locales doivent représenter précisément les principaux phénomènes physiques liés à la propagation de la houle :

- Diffraction;
- Réfraction;
- Shoaling;
- Friction;
- Déferlement.

Source : http://swanmodel.sourceforge.net/

Annexe 5. Statistiques extrêmes cycloniques – Méthode des cyclones synthétiques

	Unité	Définition	
Hm0	m	Hauteur significative spectrale des vagues = $4\sqrt{m_0}$ où m ₀ est le moment d'ordre zéro du spectre m ₀ = Jf ⁰ .E(f).df avec n = 0	
Тр	s	Période Pic : Définie comme l'inverse de la fréquence la plus énergétique du spectre total après sommation sur les directions	
Dirp	°/N	Direction pic : définie comme la direction la plus énergétique de la bande de fréquence correspondant au Tp	
Ws	m/s	Vitesse du vent : Vitesse moyenne du vent sur 10 minutes à une altitude de 10 m	
Wd	°/N	Direction du vent associée à Ws	

	CONDITIONS EXTREMES CYCLONIQUES Période de retour 100 ans (cyclones synthétiques)						
	Paramètres d'états de mer aux points de référence Vents associés						
POINTS	(Correspo	ndant à la valeur ma	(Correspondant au max du Hm0)				
	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)		
B01	8.7	11.1	305	39.0	310		
B03	8.2	10.9	5	39.0	80		
B04	6.3	9.5	265	39.0	275		
B06	9.1	11.2	315	39.0	310		
M02	9.2	11.2	315	39.0	310		
M04	8.9	11.2	305	39.0	310		
M06	7.2	10.7	15	39.0	80		
M08	7.5	11.1	295	39.0	310		
M10	9.0	11.2	315	39.0	310		
T01	8.1	10.8	295	39.0	310		
тоз	7.5	11.2	335	39.0	340		
T05	8.7	11.2	335	39.0	340		
T07	9.2	11.3	305	39.0	310		
Т09	9.3	11.2	305	39.0	310		

Annexe 6. Statistiques extrêmes cycloniques – Méthode des cyclones historiques

	Unité	Définition	
Hm0	m	Hauteur significative spectrale des vagues = $4\sqrt{m_0}$ où m ₀ est le moment d'ordre zéro du spectre m ₀ = $\int f^0.E(f).df$ avec n = 0	
Тр	s	Période Pic : Définie comme l'inverse de la fréquence la plus énergétique du spectre total après sommation sur les directions	
Dirp	°/N	Direction pic : définie comme la direction la plus énergétique de la bande de fréquence correspondant au Tp	
Ws	m/s	Vitesse du vent : Vitesse moyenne du vent sur 10 minutes à une altitude de 10 m	
Wd	°/N	Direction du vent associée à Ws	

	CONDITIONS EXTREMES CYCLONIQUES Période de retour 100 ans (Basées sur extrapolation directe des cyclones historiques)							
	Paramètres d'états de mer aux points de référence Vents associés							
POINTS	(Correspo	ndant à la valeur ma	(Correspondant au max du Hm0)					
	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)			
B01	8.8	11.7	305	28.0	350			
B03	7.7	11.1	45	29.0	110			
B04	5.9	11.3	265	31.0	320			
B06	9.0	11.6	315	28.0	330			
M02	8.4	12.2	325	24.0	320			
M04	8.2	12.5	325	25.0	325			
M06	6.1	12.6	55	24.0	120			
M08	7.1	13.0	275	29.0	345			
M10	8.1	13.2	325	24.0	345			
T01	7.1	13.0	285	26.0	325			
T03	6.1	12.0	335	23.0	325			
T05	7.4	13.0	325	24.0	325			
T07	8.0	13.0	325	25.0	325			
T09	8.3	13.0	315	29.0	325			

Annexe 7. Exemples de champs de vents et vagues cycloniques

Les figures suivantes illustrent les champs de vent et de vagues générés par le cyclone historique WASA – (Décembre 1991)

Exemple de champ de vents cycloniques - Cyclone WASA 11/12/1991 00h UTC

Exemple de champ houle cyclonique - Cyclone WASA 11/12/1991 00h UTC

CARACTERISATION DE L'ALEA SUBMERSION MARINE D'ORIGINE CYCLONIQUE VIA LES DONNEES LIDAR A TAHITI, MOOREA ET BORA BORA Phase 1 – Etat des lieux

Les figures suivantes illustrent les champs de vent et de vagues générés par le cyclone synthétique centennal ayant généré l'état de mer maximal au point B06.

Exemple de champ de vent synthétique

Annexe 8. Listing des cyclones historiques — Valeurs maximales de HmO et Ws atteintes aux points de référence

	Unité	Définition
Hm0	m	Hauteur significative spectrale des vagues = $4/m_0$ où m ₀ est le moment d'ordre zéro du spectre m ₀ = $\int f^n .E(f) .df$ avec n = 0
Тр	s	Période Pic : Définie comme l'inverse de la fréquence la plus énergétique du spectre total après sommation sur les directions
Dirp	°/N	Direction pic : définie comme la direction la plus énergétique de la bande de fréquence correspondant au Tp
Ws	m/s	Vitesse du vent : Vitesse moyenne du vent sur 10 minutes à une altitude de 10 m
Wd	°/N	Direction du vent associée à Ws

	CYCLONES HISTORIQUES MODELISES						Paramètres	d'états de me	Vent au point B01		
		DATE DEBUT	г		DATE FIN		(Correspond	ant à la valeur	max du Hm0)	(Correspondant	au max du HmO)
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)
KIM	1976	12	9	1976	12	13	2.0	8.5	265	6.6	296
ROBERT	1977	4	16	1977	4	23	3.4	10.4	285	8.0	320
ANNE	1977	12	23	1977	12	29	0.7	4.9	295	1.2	166
CHARLES	1978	2	13	1978	з	1	2.1	9.2	265	6.5	314
DIANA	1978	2	16	1978	2	22	5.9	11.1	295	18.8	318
OFA	1979	12	9	1979	12	15	2.3	7.2	285	11.9	315
	1980	3 11	21	1980	3 11	27	1.6	10.2	355	3.0	98
DAMAN	1981	2	20	1981	2	24	2.3	5.6	95	12.2	104
TAHMAR	1981	з	9	1981	з	13	4.3	9.0	305	18.9	311
FRAN	1981	з	20	1981	з	23	3.2	8.4	355	14.0	344
LISA	1982	12	10	1982	12	16	4.7	9.9	315	17.3	336
NISHA:ORAMA	1983	2	20	1983	2	28	4.1	9.9	85	18.8	135
REWA	1983	3	7	1983	3	16	87	9.0 11.5	65	32.0	109
TOMASI	1983	3	27	1983	4	3	1.9	9.0	85	10.2	151
VEENA	1983	4	7	1983	4	14	3.1	12.0	85	12.1	212
ERIC	1985	1	12	1985	1	20	0.8	9.2	245	0.8	306
FREDA	1985	1	24	1985	1	30	2.8	7.7	355	13.3	351
IMA	1986	2	6	1986	2	14	3.5	9.3	285	14.1	291
SALLY	1986	12	27	1987	1	5	3.0	9.8	285	12.4	345
WINI	1987	2	27	1987	3	7	1.0	8.01	225	5.3	40
NOT NAMED	1987	2	28	1987	3	2	2.3	6.0	25	12.2	11
ZUMAN	1987	4	19	1987	4	26	1.2	4.9	75	9.5	76
CILLA	1988	2	28	1988	з	з	3.9	10.1	285	15.1	331
JUDY	1989	2	23	1989	2	27	2.7	8.4	295	10.4	315
PENI	1990	2	12	1990	2	17	5.5	11.9	295	17.5	345
SINA	1990	11	24	1990	12	4	1.7	10.1	255	6.9	314
WASA	1991	12	5	1991	12	13	10.0	9.2	295	27.4	353
NOT NAMED	1992	1	16	1992	1	18	2.1	7.6	315	9.8	1
CLIFF	1992	2	4	1992	2	11	1.2	6.0	95	9.6	120
GENE	1992	з	13	1992	з	19	2.8	11.3	295	9.6	20
HETTIE	1992	3	23	1992	3	29	1.5	8.3	45	5.8	198
NOT NAMED	1993	1	1	1993	1	3	2.2	7.5	285	10.8	18
NUT NAIVIED	1993	1	10	1993	1	14	5.5	10.3	355	20.3	347
WILLIAM	1994	12	30	1995	1	3	4.5	10.2	305	16.3	331
NOT NAMED	1997	2	21	1997	2	24	2.4	6.3	35	14.0	28
KELLI	1997	6	9	1997	6	17	1.6	5.7	285	10.5	278
MARTIN	1997	10	28	1997	11	4	6.6	13.3	295	18.6	304
OSEA	1997	11	21	1997	11	27	7.1	11.2	315	25.0	332
PAM	1997	12	2	1997	12	10	2.4	9.8	285	7.4	327
WES	1998	1	31	1998	2	4	3.4	9.0	305	14.5	320
ALAN	1998	4	20	1998	4	26	4.5	10.6	315	15.7	44
CORA	1998	12	22	1998	12	28	1.0	4.9	35	6.2	68
NOT NAMED	1998	12	21	1998	12	24	1.4	5.7	295	9.5	302
GITA	1999	2	26	1999	2	28	1.5	6.3	295	8.4	312
HALI	1999	3	11	1999	3	18	1.8	8.5	295	7.9	8
LEO	2000	3	4	2000	3	8	1.0	4.3	95	10.1	104
TRINA	2001	2	30	2001	12	22	1.4	6.1 7.6	295	8.3	329
DOVI	2003	2	4	2003	2	11	2.3	6.9	45	12.2	42
JUDY	2004	12	22	2004	12	27	1.9	7.1	285	11.1	272
MEENA	2005	2	2	2005	2	7	3.0	7.8	355	13.4	6
OLAF	2005	2	13	2005	2	20	2.4	9.9	285	10.2	336
NANCY	2005	2	11	2005	2	17	2.5	12.9	285	9.6	47
PERCY	2005	2	24	2005	3	5	1.0	8.6	295	5.0	22
	2005	5	4 21	2005	5	27	3.5	8.4 11.7	275	5.2	296
ZITA	2007	1	21	2007	1	24	4.6	9.7	305	17.1	345
JONI	2009	з	10	2009	з	14	2.2	8.2	295	7.7	331
KEN	2009	з	16	2009	з	20	1.7	7.5	285	5.5	61
NISHA	2010	1	27	2010	1	31	2.3	8.9	285	10.6	303
ОU	2010	1	30	2010	2	7	7.2	11.9	305	20.1	338
PAT	2010	2	6	2010	2	12	1.8	6.2	85	10.7	79
5AKAH	2010	2	21	2010	3	4	1.5	6.2 E P	45	8.8	87
GARRV	2013	1	18	2013	1	28	2.6	5.8 10.7	285	7.4	344
HALEY	2013	2	8	2013	2	14	2.4	8.5	285	9.5	305
MIKE	2014	з	18	2014	з	20	2.0	6.3	45	10.9	37
NIKO	2015	1	20	2015	1	25	2.5	9.0	75	8.0	150
YALO	2016	2	23	2016	2	26	3.4	9.3	295	12.5	338
BART	2017	2	20	2017	2	22	1.5	7.6	285	2.4	311

	CYCL		RIQUESM	ODELISES			Paramètres	d'états de mer	au noint B03	Vent au point B03		
		DATE DEBUT			DATE FIN		(Correspond)	ant à la valeur	max du Hm0)	(Correspondant au max du Hm0)		
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)	
KIM	1976	12	9	1976	12	13	0.8	5.7	345	6.7	297	
ROBERT	1977	4	16	1977	4	23	2.2	7.2	25	11.5	344	
ANNE	1977	12	5	1977	12	11 29	1.4	7.0	15	2.8	1/4	
CHARLES	1978	2	13	1978	3	1	1.6	6.4	25	8.0	37	
DIANA	1978	2	16	1978	2	22	3.1	8.1	355	18.6	323	
OFA	1979	12	9	1979	12	15	1.3	5.7	345	12.1	314	
TIA	1980	3	21	1980	3	27	1.4	10.2	355	3.0	98	
DAMAN	1981	2	20	1981	2	24	1.2	5.3	45 85	12.2	104	
TAHMAR	1981	3	9	1981	3	13	2.8	7.6	345	16.3	340	
FRAN	1981	3	20	1981	3	23	2.9	8.2	355	13.9	344	
LISA	1982	12	10	1982	12	16	3.5	8.9	345	17.3	344	
DREMA	1983	2	20	1983	2	28	3.0	12.2	95	11.8	186	
REWA	1983	3	7	1983	3	16	8.6	11.5	55	32.4	100	
TOMASI	1983	3	27	1983	4	3	1.4	10.2	5	4.1	40	
VEENA	1983	4	7	1983	4	14	3.5	12.1	85	12.4	210	
ERIC	1985	1	12	1985	1	20	0.5	4.1	45	5.2	1	
IMA	1986	2	24 6	1985	2	14	2.7	/./	355	13.3	351	
SALLY	1986	12	27	1987	1	5	2.1	6.8	5	12.5	347	
TUSI	1987	1	15	1987	1	20	1.5	10.2	5	1.5	38	
WINI	1987	2	27	1987	3	7	1.2	6.2	355	7.9	330	
NOT NAMED	1987	2	28	1987	3	2	1.9	5.9	25	12.2	11	
CILLA	1988	2	28	1988	3	3	2.5	6.7	355	3.9	334	
JUDY	1989	2	23	1989	2	27	1.6	7.1	345	12.6	313	
PENI	1990	2	12	1990	2	17	4.6	9.1	15	17.6	29	
SINA	1990	11	24	1990	12	4	0.8	5.7	185	6.1	146	
VAL	1991	12	4	1991	12	13	1.4	6.9	35	5.5	302	
NOT NAMED	1992	12	16	1992	12	15	1.9	6.7	345	29.2	2	
CLIFF	1992	2	4	1992	2	11	1.2	5.1	95	9.6	118	
GENE	1992	3	13	1992	3	19	1.8	6.2	5	10.6	13	
HETTIE	1992	3	23	1992	3	29	1.6	8.4	45	6.0	195	
NOT NAMED	1993	1	1	1993	1	3	1.8	5.8	15	11.8	21	
NISHA	1993	2	10	1993	2	16	1.2	6.3	355	7.7	309	
WILLIAM	1994	12	30	1995	1	з	2.9	7.8	355	16.1	332	
NOT NAMED	1997	2	21	1997	2	24	2.5	6.4	45	14.1	28	
KELLI	1997	6	9	1997	6	17	1.6	6.3	185	11.0	159	
OSEA	1997	10	28	1997	11	4 27	5.5	8.0	345	16.2	14 341	
PAM	1997	12	2	1997	12	10	1.8	8.4	165	8.7	135	
VELI	1998	1	31	1998	2	4	2.1	6.7	345	14.7	323	
WES	1998	1	31	1998	2	4	1.6	6.3	355	9.0	29	
ALAN	1998	4	20	1998	4	26	3.7	8.1	45	15.7	49	
NOT NAMED	1998	12	21	1998	12	24	1.1	6.7	185	8.8	323	
GITA	1999	2	26	1999	2	28	1.0	6.2	55	8.3	312	
HALI	1999	3	11	1999	3	18	1.3	6.3	355	7.5	6	
LEO	2000	3	4	2000	3	8	1.0	4.2	95	10.1	104	
OMA	2001	2	18	2001	17	22	1.0	5.1	345	9.3	336	
DOVI	2001	2	4	2003	2	11	2.3	6.8	45	12.2	42	
JUDY	2004	12	22	2004	12	27	1.4	7.4	165	10.6	228	
MEENA	2005	2	2	2005	2	7	2.7	7.6	5	13.2	7	
OLAF	2005	2	13	2005	2	20	1.5	5.5	355	11.3	350	
DEPCY	2005	2	11	2005	2	1/	1.9	6.2 E 1	45	11.4	30	
RAE	2005	3	4	2005	3	6	0.9	6.3	5	4.7	334	
ARTHUR	2007	1	21	2007	1	27	1.8	6.2	355	12.5	343	
ZITA	2007	1	21	2007	1	24	3.6	8.4	5	17.2	348	
JONI	2009	3	10	2009	3	14	1.4	5.8	355	10.1	341	
KÉN	2009	3	16	2009	3 1	20	1.1	5.3 g 1	75 175	8.5	92	
OLI	2010	1	30	2010	2	7	5.4	10.9	345	21.3	350	
PAT	2010	2	6	2010	2	12	1.7	6.0	85	10.7	79	
SARAH	2010	2	21	2010	3	4	1.5	6.2	45	8.8	85	
ZAKA	2011	2	3	2011	2	8	1.2	5.7	55	8.7	85	
GARRY	2013	1	18	2013	1	28	1.9	6.0	15	12.3	7	
MIKE	2013	2	5 19	2013	2	14 20	1.3	6.2	345 45	10.1	314	
NIKO	2014	1	20	2015	1	25	2.7	9.2	45	9.2	182	
YALO	2016	2	23	2016	2	26	2.2	7.6	345	13.4	331	
BART	2017	2	20	2017	2	22	1.1	4.8	75	9.3	97	

	CYCLONES HISTORIQUES MODELISES					Paramètres	d'états de me	r au point BO4	Vent au point B04		
	(DATE DEBUT	-		DATE FIN		(Correspond	ant à la valeur	max du Hm0)	(Correspondant	au max du Hm0)
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)
KIM	1976	12	9	1976	12	13	2.3	11.9	245	6.8	296
ROBERT	1977	4	16	1977	4	23	2.5	11.2	275	8.5	312
ANNE	1977	12	23	1977	12	29	0.4	6.1	285	4.5	90
CHARLES	1978	2	13	1978	3	1	2.1	10.5	255	6.5	314
DIANA	1978	2	16	1978	2	22	4.3	10.7	285	19.2	308
OFA	1979	12	9	1979	12	15	2.2	9.6	255	12.4	317
	1980	3 11	21	1980	3 11	27	1.0	6.7	155	7.4	282
DAMAN	1981	2	20	1981	2	24	2.1	10.1	265	12.2	104
TAHMAR	1981	3	9	1981	3	13	3.1	9.2	285	19.0	309
FRAN	1981	3	20	1981	3	23	1.6	7.6	295	14.1	329
LISA	1982	12	10	1982	12	16	2.5	9.9	235	10.6	313
NISHA:ORAMA	1983	2	20	1983	2	28	2.5	7.1	185	11.7	185
REWA	1983	3	7	1983	3	16	5.9	10.7	75	31.1	112
TOMASI	1983	3	27	1983	4	3	1.2	6.9	165	7.4	91
VEENA	1983	4	7	1983	4	14	2.9	12.0	75	12.3	208
ERIC	1985	1	12	1985	1	20	1.2	9.3	245	1.1	315
FREDA	1985	1	24	1985	1	30	1.2	9.2	245	1.1	315
IMA	1986	2	6	1986	2	14	4.1	10.2	235	14.2	291
SALLY	1986	12	2/	1987	1	20	2.5	10.9	245	9.0	312
WINI	1987	2	27	1987	3	7	19	9.8	235	2.4	35
NOT NAMED	1987	2	28	1987	3	2	1.4	10.9	285	7.4	12
ZUMAN	1987	4	19	1987	4	26	1.3	8.4	165	3.9	48
CILLA	1988	2	28	1988	3	3	3.0	10.8	265	15.3	332
JUDY	1989	2	23	1989	2	27	2.3	10.0	245	6.6	323
PENI	1990	2	12	1990	2	17	3.0	12.4	285	17.8	344
SINA	1990	11	24 A	1990	12	4	2.0	10.2	255	5.7	314
WASA	1991	12	5	1991	12	13	5.7	11.6	285	24.6	317
NOT NAMED	1992	1	16	1992	1	18	1.1	4.2	285	11.0	279
CLIFF	1992	2	4	1992	2	11	1.2	6.7	155	7.9	137
GENE	1992	3	13	1992	3	19	1.5	11.9	285	9.6	21
HETTIE	1992	3	23	1992	3	29	1.5	6.6	225	5.0	252
NOT NAMED	1993	1	1	1993	1	3	1.8	9.4	265	6.8	337
NISHA	1993	2	10	1993	2	14	2.0	11.9	305	20.9	350
WILLIAM	1994	12	30	1995	1	3	3.1	11.5	265	16.0	313
NOT NAMED	1997	2	21	1997	2	24	1.2	6.6	75	14.2	30
KELLI	1997	6	9	1997	6	17	1.8	6.7	205	11.0	159
MARTIN	1997	10	28	1997	11	4	4.5	13.6	285	19.0	306
OSEA	1997	11	21	1997	11	27	4.3	9.5	265	22.7	302
PAM	1997	12	2	1997	12	10	2.0	11.1	255	5.5	341
WES	1998	1	31	1998	2	4	2.1	7.4	185	8.7	250
ALAN	1998	4	20	1998	4	26	2.2	9.8	305	16.0	55
CORA	1998	12	22	1998	12	28	1.0	9.5	225	6.7	68
NOT NAMED	1998	12	21	1998	12	24	1.4	6.2	265	9.2	304
GITA	1999	2	26	1999	2	28	1.1	6.4	275	8.4	312
HALI	1999	3	11	1999	3	18	1.3	9.4	265	7.9	9
OMA	2000	3	4	2000	3	22	1.0	4.8	255	10.2	104
TRINA	2001	11	30	2001	12	3	1.5	6.8	155	11.4	141
DOVI	2003	2	4	2003	2	11	1.2	6.8	75	12.2	42
JUDY	2004	12	22	2004	12	27	2.3	7.4	255	11.1	272
MEENA	2005	2	2	2005	2	7	1.8	8.5	275	8.8	296
OLAF	2005	2	13	2005	2	20	1.9	9.8	275	9.2	313
NANCY	2005	2	11	2005	2	17	1.7	13.2	275	9.4	49
PERCY	2005	2	24 4	2005	3	5	0.6	9.1	285	5.1	15
ARTHUR	2007	1	21	2007	1	27	2.7	11.9	275	10.5	320
ZITA	2007	1	21	2007	1	24	2.4	11.1	295	13.4	349
JONI	2009	3	10	2009	3	14	1.8	9.7	255	7.1	90
KEN	2009	3	16	2009	3	20	1.4	9.3	245	6.7	79
NISHA	2010	1	27	2010	1	31	1.8	8.2	175	7.3	126
	2010	1	30	2010	2	7	4.9	11.2	265	20.5	312
	2010	2	21	2010	2	12	1.5	9.Z	255	10.7	79
ZAKA	2011	2	3	2011	2	8	1.1	7.6	155	8.1	70
GARRY	2013	1	18	2013	1	28	2.3	8.3	245	13.1	305
HALEY	2013	2	8	2013	2	14	2.1	9.0	265	9.9	302
MIKE	2014	3	18	2014	3	20	1.2	6.4	75	10.9	37
NIKO	2015	1	20	2015	1	25	2.7	8.0	245	8.7	265
YALO	2016	2	23	2016	2	26	2.5	9.8	265	11.6	332
DAKI	201/	2	20	201/	2	<u> </u>	1.5	9.5	255	2.0	296

	CYOL	ONES HISTO	RIQUES M	ODELISES	DATE SIN		Paramètres (d'états de mer	au point B06	Vent au point B06		
NOM		DATE DEBUT			DATE FIN	10110	(Corresponda	ant a la valeur	max du Hm0)	(Correspondant	au max du Hm0)	
KIM	1976	12	9	1976	12	13	7 5	11 9	245	6.7	297	
ROBERT	1977	4	16	1977	4	23	3.3	10.3	295	8.2	320	
TESSA	1977	12	5	1977	12	11	0.8	5.5	185	5.2	200	
ANNE	1977	12	23	1977	12	29	0.7	5.2	295	1.2	166	
DIANA	1978	2	15	1978	2	22	2.4	10.3	255	6.5 19 3	314	
OFA	1979	12	9	1979	12	15	2.6	7.3	305	12.4	317	
TIA	1980	3	21	1980	3	27	1.4	10.3	335	3.0	98	
DIOLA	1980	11	27	1980	11	30	1.5	6.0	225	9.1	232	
DAMAN	1981	2	20	1981	2	24	1.6	10.4	275	11.8	98	
FRAN	1981	3	20	1981	3	23	4.5	9.0	305	18.9	310	
LISA	1982	12	10	1982	12	16	5.0	10.0	325	18.6	330	
NISHA: ORAMA	1983	2	20	1983	2	28	2.0	7.0	185	11.3	186	
PREMA	1983	2	25	1983	3	2	2.6	9.9	325	9.5	356	
REWA	1983	3	7	1983	3	16	3.9	12.0	25	31.7	111	
VEENA	1983	3	2/	1983	4	3 14	1.4	10.3	335	4.0	41	
ERIC	1985	1	12	1985	1	20	1.2	9.3	245	0.9	309	
FREDA	1985	1	24	1985	1	30	2.7	8.2	325	13.1	355	
IMA	1986	2	6	1986	2	14	4.5	9.9	235	14.1	291	
SALLY	1986	12	27	1987	1	5	3.0	9.8	295	12.2	342	
TUSI	1987	1	15	1987	1	20	1.4	10.3	335	1.6	35	
	1987	2	2/	1987	3	2	2.2	9.1	245	2.4	36	
7UMAN	1987	4	19	1987	4	26	11	7.7	235	5.5	68	
CILLA	1988	2	28	1988	3	3	4.0	10.0	285	15.3	332	
JUDY	1989	2	23	1989	2	27	3.0	8.4	305	10.4	315	
PENI	1990	2	12	1990	2	17	5.4	11.4	305	17.7	344	
SINA	1990	11	24	1990	12	4	2.1	10.2	255	6.9	314	
VAL WASA	1991	12	4	1991	12	13	2.1	9.2	295	5.0	307	
NOT NAMED	1992	1	16	1992	1	15	2.0	7.8	325	9.8	360	
CLIFF	1992	2	4	1992	2	11	0.8	6.6	175	6.1	198	
GENE	1992	3	13	1992	3	19	2.6	11.2	295	9.6	19	
HETTIE	1992	3	23	1992	3	29	1.5	6.4	225	5.1	253	
NOT NAMED	1993	1	1	1993	1	3	2.2	8.4	285	10.3	346	
NOT NAMED	1993	2	10	1993	2	14	5.8	10.9	335	6.3	347	
WILLIAM	1994	12	30	1995	1	3	4.7	10.2	305	16.3	328	
NOT NAMED	1997	2	21	1997	2	24	1.8	7.5	305	10.4	37	
KELLI	1997	6	9	1997	6	17	1.7	5.8	275	10.6	276	
MARTIN	1997	10	28	1997	11	4	6.6	13.3	295	18.8	301	
DAM	1997	11	21	1997	11	2/	7.8	11.6	325	27.1	331	
VELI	1998	1	31	1998	2	4	3.5	8.9	305	14.4	318	
WES	1998	1	31	1998	2	4	1.7	9.7	295	6.9	7	
ALAN	1998	4	20	1998	4	26	4.3	10.9	315	15.8	48	
CORA	1998	12	22	1998	12	28	1.0	9.6	225	6.8	68	
NOT NAMED	1998	12	21	1998	12	24	1.6	6.0	305	9.2	303	
HALL	1999	3	11	1999	3	18	1.4	8.5	295	8.4 7.9	9	
LEO	2000	3	4	2000	3	8	0.8	4.6	245	5.9	10	
OMA	2001	2	18	2001	2	22	1.6	8.2	255	8.1	272	
TRINA	2001	11	30	2001	12	3	1.9	7.7	295	7.5	330	
DOVI	2003	2	4	2003	2	11	1.5	12.2	295	6.8	78	
JUDY	2004	12	22	2004	12	2/	2.4	/.3	255	11.1	2/2	
OLAF	2005	2	13	2005	2	20	2.9	0.5 10.0	285	10.4	335	
NANCY	2005	2	11	2005	2	17	2.0	13.0	285	9.6	47	
PERCY	2005	2	24	2005	3	5	0.8	8.5	295	5.1	23	
RAE	2005	3	4	2005	3	6	1.1	7.6	235	5.0	174	
ARTHUR	2007	1	21	2007	1	27	3.5	11.7	285	10.4	319	
	2007	3	10	2007	3	24 14	4.5	10.8	305	13.4	346	
KEN	2009	3	16	2009	3	20	1.7	7.9	295	5.8	72	
NISHA	2010	1	27	2010	1	31	2.4	8.8	295	10.6	303	
ОU	2010	1	30	2010	2	7	7.2	11.9	305	19.4	326	
PAT	2010	2	6	2010	2	12	1.5	10.1	295	4.0	17	
SARAH	2010	2	21	2010	3	4	1.3	5.7	315	8.7	305	
GARRV	2011	2	3 18	2011	2	8 28	2.8	8.Z 7 3	305	7.3	52 305	
HALEY	2013	2	8	2013	2	14	2.6	8.5	295	9.9	302	
MIKE	2014	3	18	2014	3	20	1.4	6.1	15	11.0	37	
NIKO	2015	1	20	2015	1	25	2.7	7.9	245	8.2	269	
YALO	2016	2	23	2016	2	26	3.6	9.4	305	12.1	334	
BART	2017	2	20	2017	2	22	1.6	7.8	295	2.4	308	

	CYCLONES HISTORIQUES MODELISES						Paramètres o	d'états de mer	au point M02	Vent au point M02		
		DATE DEBUT	г		DATE FIN		(Correspond	ant à la valeur	max du Hm0)	(Correspondant	au max du Hm0)	
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)	
KIM	1976	12	9	1976	12	13	1.9	7.3	275	7.8	298	
ROBERT	1977	4	16	1977	4	23	2.9	11.4	275	7.7	315	
TESSA	1977	12	5	1977	12	11	1.1	7.0	85	4.8	147	
CHARIES	1977	2	13	1977	3	1	0.7	4.6 10.4	335	1./	343	
DIANA	1978	2	16	1978	2	22	4.8	10.7	315	13.9	5	
OFA	1979	12	9	1979	12	15	2.1	9.6	265	8.7	347	
TIA	1980	3	21	1980	3	27	1.3	5.1	325	10.0	316	
DIOLA	1980	11	27	1980	11	30	1.1	6.1	265	9.5	229	
	1981	2	20	1981	2	24	5.7	10.0	275	20.8	107	
FRAN	1981	3	20	1981	3	23	3.3	8.2	315	14.9	333	
LISA	1982	12	10	1982	12	16	4.5	9.4	325	16.2	27	
NISHA:ORAMA	1983	2	20	1983	2	28	3.1	12.2	85	9.8	193	
PREMA	1983	2	25	1983	3	2	2.5	9.4	315	10.4	319	
REWA	1983	3	7	1983	3	16	6.0	10.9	355	21.9	111	
VEENA	1983	3	2/	1983	4	5 14	1.5	6.U	535	18.0	359	
ERIC	1985	1	12	1985	1	20	0.8	9.1	255	0.5	323	
FREDA	1985	1	24	1985	1	30	2.5	8.1	325	10.1	342	
IMA	1986	2	6	1986	2	14	4.8	9.5	285	17.8	290	
SALLY	1986	12	27	1987	1	5	2.8	10.7	265	9.0	319	
TUSI	1987	1	15	1987	1	20	2.4	7.0	355	12.6	38	
	1987	2	2/	1987	3	,	2.0	8.2	265	5.8	297	
7UMAN	1987	4	19	1987	4	26	0.8	5.0	55	4.1	23 67	
CILLA	1988	2	28	1988	3	3	3.9	10.6	275	13.6	331	
JUDY	1989	2	23	1989	2	27	2.8	8.2	275	9.8	332	
PENI	1990	2	12	1990	2	17	4.5	9.7	325	15.3	354	
SINA	1990	11	24	1990	12	4	1.8	10.2	265	3.9	307	
VAL	1991	12	4	1991	12	13	2.6	7.1	305	13.7	271	
NOT NAMED	1992	12	16	1992	12	15	19	7.5	325	7.1	348	
CLIFF	1992	2	4	1992	2	11	0.8	6.6	85	6.3	131	
GENE	1992	3	13	1992	3	19	1.9	12.1	285	7.7	27	
HETTIE	1992	3	23	1992	3	29	1.8	8.4	25	7.9	201	
NOT NAMED	1993	1	1	1993	1	3	2.3	10.4	265	8.3	2	
NOT NAMED	1993	1	10	1993	1	14	4.1	10.8	315	14.9	344	
WILLIAM	1994	12	30	1995	1	3	3.8	10.3	265	14.8	327	
NOT NAMED	1997	2	21	1997	2	24	1.4	5.7	335	9.8	1	
KELLI	1997	6	9	1997	6	17	1.4	5.5	315	8.9	312	
MARTIN	1997	10	28	1997	11	4	5.6	13.0	285	15.5	334	
OSEA	1997	11	21	1997	11	27	5.1	10.8	285	14.8	333	
VELL	1998	12	2	1998	2	4	2.5	83	265	3.8	249	
WES	1998	1	31	1998	2	4	1.7	6.2	85	13.3	100	
ALAN	1998	4	20	1998	4	26	3.5	10.1	315	12.0	50	
CORA	1998	12	22	1998	12	28	1.4	5.6	355	8.0	37	
NOT NAMED	1998	12	21	1998	12	24	2.1	6.2	315	12.2	316	
GITA	1999	2	26	1999	2	28	1.5	6.2	275	6.0	330	
LEO	2000	3	4	2000	3	8	1.0	4.7	205	9.2	105	
OMA	2001	2	18	2001	2	22	1.3	8.3	265	5.8	288	
TRINA	2001	11	30	2001	12	3	1.7	6.7	25	8.0	344	
DOVI	2003	2	4	2003	2	11	2.1	6.4	55	11.5	45	
JUDY	2004	12	22	2004	12	27	2.2	7.4	265	11.9	280	
MEENA OLAE	2005	2	13	2005	2	20	2.5	8.1	325	10.9	22	
NANCY	2005	2	11	2005	2	17	1.8	11.5	285	6.6	354	
PERCY	2005	2	24	2005	3	5	1.7	10.2	265	5.6	271	
RAE	2005	3	4	2005	3	6	1.4	9.8	265	6.2	264	
ARTHUR	2007	1	21	2007	1	27	3.3	11.9	275	10.5	12	
ZITA	2007	1	21	2007	1	24	3.5	10.1	315	9.7	359	
JONI	2009	3	10	2009	3	20	2.2	7.6	315	7.2	34Z	
NISHA	2010	1	27	2010	1	31	2.0	8.0	275	8.9	276	
OLI	2010	1	30	2010	2	7	7.6	12.1	325	20.5	351	
PAT	2010	2	6	2010	2	12	1.5	5.9	65	8.1	79	
SARAH	2010	2	21	2010	3	4	1.6	6.2	325	8.9	316	
ZAKA	2011	2	3	2011	2	8	1.4	5.7	85	10.7	92	
GARRY	2013	1	18	2013	1	28	2.5	11.3	2/5	11.1	23	
MIKE	2014	3	18	2014	3	20	1.6	5.9	200 85	10.3	47	
NIKO	2015	1	20	2015	1	25	3.1	9.5	65	11.0	77	
YALO	2016	2	23	2016	2	26	3.4	9.4	315	11.0	353	
BART	2017	2	20	2017	2	22	1.5	9.1	265	1.7	338	

	CYOL	ONES HISTO	RIQUES M	ODELISES	DATE SIN		Paramètres d	l'états de mer	au point M04	Vent au point M04		
NOM		DATE DEBUT			DATE FIN	10110	(Corresponda	ant a la valeur	max du Hm0)	(Correspondant	au max du Hm0)	
KIM	1976	12	9	1976	12	13	1 6	6.8	275	7.8	298	
ROBERT	1977	4	16	1977	4	23	2.6	11.0	285	7.6	316	
TESSA	1977	12	5	1977	12	11	1.3	7.0	85	4.7	154	
ANNE	1977	12	23	1977	12	29	0.7	4.6	335	1.7	345	
DIANA	1978	2	15	1978	2	22	1.9	7.0 10.4	275	6.Z 13.8	326	
OFA	1979	12	9	1979	12	15	1.8	7.0	315	8.7	347	
TIA	1980	3	21	1980	3	27	1.3	5.2	335	9.1	306	
DIOLA	1980	11	27	1980	11	30	1.5	8.7	155	11.1	107	
DAMAN	1981	2	20	1981	2	24	2.0	10.9	275	11.6	107	
FRAN	1981	3	20	1981	3	23	3.0	8.2	315	20.9	323	
LISA	1982	12	10	1982	12	16	4.5	9.5	325	15.8	27	
NISHA: ORAMA	1983	2	20	1983	2	28	3.4	12.3	85	9.9	192	
PREMA	1983	2	25	1983	3	2	2.6	9.2	315	10.5	322	
REWA	1983	3	7	1983	3	16	6.1	10.9	345	21.9	109	
VEENA	1983	3	2/	1983	4	3 14	5.7	6./ 17./	105	10.4	101	
ERIC	1985	1	12	1985	1	20	0.8	4.8	45	5.8	351	
FREDA	1985	1	24	1985	1	30	2.5	8.1	325	9.7	343	
IMA	1986	2	6	1986	2	14	4.3	9.3	285	17.8	291	
SALLY	1986	12	27	1987	1	5	2.4	7.9	325	9.0	320	
TUSI	1987	1	15	1987	1	20	2.3	7.0	355	12.4	38	
	1987	2	2/	1987	3	2	1.8	10.0	275	5.3	304	
7UMAN	1987	4	19	1987	4	26	1.0	5.2	55	3.7	48	
CILLA	1988	2	28	1988	3	3	3.5	9.8	285	12.5	325	
JUDY	1989	2	23	1989	2	27	2.6	7.9	325	9.8	332	
PENI	1990	2	12	1990	2	17	4.3	9.5	315	15.1	354	
SINA	1990	11	24	1990	12	4	1.2	9.9	275	4.6	304	
VAL WASA	1991	12	4	1991	12	13	2.5	7.4 17.4	295	14.2	264	
NOT NAMED	1992	1	16	1992	1	15	2.0	7.6	315	7.0	0	
CLIFF	1992	2	4	1992	2	11	1.1	6.3	165	8.2	129	
GENE	1992	3	13	1992	3	19	1.8	6.2	355	7.4	27	
HETTIE	1992	3	23	1992	3	29	2.0	8.4	25	7.4	202	
NOT NAMED	1993	1	1	1993	1	3	1.9	7.8	275	8.0	359	
NUT NAIVIED NISHA	1993	2	10	1993	2	14	4.1	8.01	275	14.8	345	
WILLIAM	1994	12	30	1995	1	3	3.5	9.1	315	14.5	326	
NOT NAMED	1997	2	21	1997	2	24	1.4	5.7	335	9.4	2	
KELLI	1997	6	9	1997	6	17	1.5	7.8	165	9.7	144	
MARTIN	1997	10	28	1997	11	4	5.2	11.9	285	15.8	336	
DAM	1997	12	21	1997	12	27	4.9	11.1	315	14./	353	
VELI	1998	1	31	1998	2	4	2.6	9.0	165	7.9	148	
WES	1998	1	31	1998	2	4	2.0	6.7	85	13.2	99	
ALAN	1998	4	20	1998	4	26	3.5	10.4	315	11.9	50	
CORA	1998	12	22	1998	12	28	1.4	5.4	35	9.4	34	
NOT NAMED	1998	12	21	1998	12	24	2.1	6.2	315	12.2	318	
HALL	1999	3	11	1999	3	18	1.4	5.9	345	7.0	16	
LEO	2000	3	4	2000	3	8	1.1	4.4	25	7.7	14	
OMA	2001	2	18	2001	2	22	1.1	6.2	275	6.1	310	
TRINA	2001	11	30	2001	12	3	1.7	6.5	35	7.8	344	
DOVI	2003	2	4	2003	2	11	2.0	6.4	55	11.4	44	
JUDY	2004	12	22	2004	12	2/	2.3	/./	2/5	11.9	280	
OLAF	2005	2	13	2005	2	20	2.2	6.5	285	13.9	22	
NANCY	2005	2	11	2005	2	17	1.7	11.5	285	6.6	354	
PERCY	2005	2	24	2005	3	5	1.3	6.7	275	4.7	293	
RAE	2005	3	4	2005	3	6	1.1	5.3	5	6.9	343	
ARTHUR	2007	1	21	2007	1	27	3.0	11.7	285	10.2	11	
IONI	2007	3	10	2007	3	14	2.0	9.9	315	9.7	349	
KEN	2009	3	16	2009	3	20	1.5	6.6	325	6.0	62	
NISHA	2010	1	27	2010	1	31	1.9	7.9	175	6.8	125	
ОU	2010	1	30	2010	2	7	7.3	12.0	325	20.1	352	
PAT	2010	2	6	2010	2	12	1.5	6.3	85	8.0	52	
SARAH	2010	2	21	2010	3	4	1.6	6.2	325	8.6	317	
GARRY	2011	1	5 18	2011	2	28	2.4	5.0 11 1	85 285	10.7	92 23	
HALEY	2013	2	8	2013	2	14	2.4	8.6	275	9.3	316	
MIKE	2014	3	18	2014	3	20	1.6	5.6	85	10.2	42	
NIKO	2015	1	20	2015	1	25	3.4	9.9	65	10.1	117	
YALO	2016	2	23	2016	2	26	3.2	8.4	5	14.2	12	
BART	2017	2	20	2017	2	22	1.3	6.3	325	3.4	32	

	CYCLONES HISTORIQUES MO			ODELISES			Paramètres d	l'états de mer	au point M06	Vent au point M06		
	[DATE DEBUT	г		DATE FIN		(Correspondant à la valeur max du Hm0) ((Correspondant au max du Hm0)			
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)	
KIM	1976	12	9	1976	12	13	0.8	5.7	355	7.9	297	
ROBERT	1977	4	16	1977	4	23	1.6	6.4	25	9.9	35	
IESSA	1977	12	5	1977	12	11	1.2	6.8	65	4.7	152	
CHARLES	1978	2	13	1978	3	1	0.9	4.5 6.2	5	6.9	316	
DIANA	1978	2	16	1978	2	22	2.8	7.6	25	14.9	15	
OFA	1979	12	9	1979	12	15	1.1	5.7	5	7.6	343	
TIA	1980	3	21	1980	3	27	1.1	6.8	155	1.6	305	
DIOLA	1980	11	27	1980	11	30	1.7	8.6	155	11.2	105	
TAHMAR	1981	3	9	1981	2	13	2.5	5.1	145	19.3	341	
FRAN	1981	3	20	1981	3	23	1.7	6.5	5	14.7	334	
LISA	1982	12	10	1982	12	16	3.5	8.6	25	15.6	28	
NISHA: ORAMA	1983	2	20	1983	2	28	2.7	12.1	65	10.7	178	
PREMA	1983	2	25	1983	3	2	2.0	8.5	185	5.4	316	
REWA	1983	3	7	1983	3	16	5.2	10.3	45	22.8	117	
VEENA	1983	4	7	1983	4	14	5.8	0.7	100	18.4	101	
ERIC	1985	1	12	1985	1	20	0.7	4.8	45	5.6	355	
FREDA	1985	1	24	1985	1	30	1.9	7.4	5	10.4	352	
IMA	1986	2	6	1986	2	14	3.0	10.5	225	17.7	285	
SALLY	1986	12	27	1987	1	5	1.5	6.4	5	9.3	31	
TUSI	1987	1	15	1987	1	20	1.9	6.7	5	12.2	38	
WINI	1987	2	27	1987	3	7	1.4	5.3	45	10.5	38	
	1987	2	28	1987	3	2	1.4	5.3	35	10.5	38	
CILLA	1988	4	28	1988	3	20	0.9	6.0	1/5	5.0	20	
JUDY	1989	2	23	1989	2	27	1.4	7.0	5	11.9	331	
PENI	1990	2	12	1990	2	17	2.7	7.7	5	16.0	357	
SINA	1990	11	24	1990	12	4	1.0	8.4	225	5.4	166	
VAL	1991	12	4	1991	12	13	1.6	7.6	205	14.0	265	
WASA	1991	12	5	1991	12	13	4.8	9.9	15	18.9	38	
NOT NAMED	1992	1	16	1992	1	18	1.4	6.9	5	7.9	40	
GENE	1992	2	4 13	1997	2	19	1.2	5.5	155	8.3	128	
HETTIE	1992	3	23	1992	3	29	1.9	8.5	25	7.0	213	
NOT NAMED	1993	1	1	1993	1	3	1.0	6.2	5	7.0	4	
NOT NAMED	1993	1	10	1993	1	14	2.2	6.8	5	15.0	346	
NISHA	1993	2	11	1993	2	16	1.2	13.2	235	6.4	297	
WILLIAM	1994	12	30	1995	1	3	2.3	6.5	35	14.7	18	
NOT NAMED	1997	2	21	1997	2	24	1.1	4.8	25	9.8	28	
MARTIN	1997	10	78	1997	11	4	3.7	7.7	165	9.7	144	
OSFA	1997	11	21	1997	11	27	2.6	7.4	5	13.9	16	
PAM	1997	12	2	1997	12	10	1.5	7.7	155	6.0	50	
VELI	1998	1	31	1998	2	4	2.5	8.6	155	8.3	146	
WES	1998	1	31	1998	2	4	1.9	6.9	155	13.0	100	
ALAN	1998	4	20	1998	4	26	2.5	7.5	35	12.5	55	
CORA	1998	12	22	1998	12	28	1.2	5.2	35	9.3	34	
	1998	12	21	1998	12	24	1.2	6.1 5.7	5	12.3	31/	
HALL	1999	3	11	1999	3	18	1.0	5.7	155	7.6	92 17	
LEO	2000	3	4	2000	3	8	1.1	7.0	155	8.3	25	
OMA	2001	2	18	2001	2	22	0.8	5.5	145	7.2	96	
TRINA	2001	11	30	2001	12	3	1.2	5.3	5	9.8	5	
DOVI	2003	2	4	2003	2	11	1.9	6.3	55	11.5	45	
JUDY	2004	12	22	2004	12	27	2.1	8.1	155	11.4	220	
NIEENA	2005	2	13	2005	2	20	1.9	7.1	5	12.4	348	
NANCY	2005	2	11	2005	2	17	1.1	6.4	145	6.7	57	
PERCY	2005	2	24	2005	3	5	1.1	9.9	235	7.3	175	
RAE	2005	3	4	2005	3	6	1.0	4.7	205	7.3	175	
ARTHUR	2007	1	21	2007	1	27	1.5	6.6	5	10.9	3	
ZITA	2007	1	21	2007	1	24	2.0	7.0	5	13.2	358	
JONI	2009	3	10	2009	3	14	1.2	5.6	5	9.6	355	
KEN	2009	3	16	2009	3	20	0.9	5.6	5	7.2	340	
	2010	1	2/	2010	7	51	1.8	7.8 10 7	1/5	0.2 19.7	133	
РАТ	2010	2	6	2010	2	12	1.3	6.0	65	8.6	67	
SARAH	2010	2	21	2010	3	4	1.1	7.8	175	5.4	33	
ZAKA	2011	2	3	2011	2	8	1.3	5.5	65	10.7	92	
GARRY	2013	1	18	2013	1	28	1.6	5.8	35	11.3	23	
HALEY	2013	2	8	2013	2	14	1.2	6.2	5	9.4	316	
MIKE	2014	3	18	2014	3	20	1.4	5.5	55	10.3	41	
NIKO	2015	1	20	2015	1	25	3.2	9.9	55	9.7	114	
BART	2016	2	23 20	2016	2	25	2.9	8.4 4 n	25	13.9	14 112	
POINT -					_		0.0	7.0		0.2	112	

	CYC			ODELIEEE			Paramètres d'états de mer au point M08				
	Cru		RIQUES IV	ODELISES			Parametres o	a etats de mer	(Correspondant au max du Hm0)		
NOM							(Correspond	To (c)	Dim (° (N)	(Correspondant)	au max du HmU)
KIM	1976	12	9	1976	12	13	2.0	8.2	265	8.0	298
ROBERT	1977	4	16	1977	4	23	2.8	11.1	275	7.7	302
TESSA	1977	12	5	1977	12	11	1.2	6.3	135	3.0	197
CHARLES	1977	12	23	1977	12	29	0.4	6.3 10.8	285	3.2	104
DIANA	1978	2	16	1978	2	22	3.3	11.0	285	14.2	10
OFA	1979	12	9	1979	12	15	2.0	10.1	255	7.6	343
TIA	1980	3	21	1980	3	27	1.4	7.3	145	8.9	293
DIOLA	1980	11	27	1980	11	30	2.0	8.5	145	11.2	104
TAHMAR	1981	3	9	1981	3	13	4.6	10.1	285	21.1	318
FRAN	1981	3	20	1981	3	23	2.3	8.9	295	12.1	330
LISA	1982	12	10	1982	12	16	2.6	10.0	265	10.2	327
DREMA	1983	2	20	1983	2	28	2.7	7.8	165	11.3	187
REWA	1983	3	7	1983	3	16	4.4	8.7	125	21.9	119
TOMASI	1983	3	27	1983	4	3	1.5	6.5	155	10.5	100
VEENA	1983	4	7	1983	4	14	4.7	9.3	125	18.0	190
ERIC	1985	1	12	1985	1	20	1.3	10.3	245	1.9	356
IMA	1986	2	6	1986	2	14	5.4	0.5 10.1	265	18.2	284
SALLY	1986	12	27	1987	1	5	2.6	10.9	255	8.9	317
TUSI	1987	1	15	1987	1	20	1.3	7.6	155	4.1	115
WINI	1987	2	27	1987	3	7	2.2	10.2	245	2.4	19
7UMAN	1987	2	28	1987	3	2	1.4	11.4	285	8.1	21
CILLA	1988	2	28	1988	3	3	3.5	10.9	275	12.6	324
JUDY	1989	2	23	1989	2	27	2.4	10.3	245	5.6	342
PENI	1990	2	12	1990	2	17	3.4	12.5	285	15.0	350
SINA	1990	11	24	1990	12	4	2.1	10.3	265	3.9	310
WASA	1991	12	5	1991	12	13	4.5	0.0 17.7	285	13.4	267
NOT NAMED	1992	1	16	1992	1	18	1.4	7.5	135	6.6	100
CLIFF	1992	2	4	1992	2	11	1.4	6.4	135	8.3	128
GENE	1992	3	13	1992	3	19	1.5	12.5	285	7.9	28
NOT NAMED	1992	3	1	1992	3	29	2.0	6.7 10.6	255	8.0	2/6
NOT NAMED	1993	1	10	1993	1	14	2.4	10.0	315	15.4	346
NISHA	1993	2	11	1993	2	16	3.1	11.9	255	6.7	301
WILLIAM	1994	12	30	1995	1	3	3.2	10.9	265	14.6	326
NOT NAMED	1997	2	21	1997	2	24	0.9	6.4	125	4.5	94
MARTIN	1997	10	28	1997	11	4	4.7	13.6	215	15.7	336
OSEA	1997	11	21	1997	11	27	4.4	10.1	275	17.2	314
PAM	1997	12	2	1997	12	10	2.1	11.2	265	3.6	8
VELI	1998	1	31	1998	2	4	2.8	7.8	195	11.5	249
ALAN	1998	4	20	1998	4	26	2.0	7.0	145	12.9	64
CORA	1998	12	22	1998	12	28	1.1	11.0	235	4.5	73
NOT NAMED	1998	12	21	1998	12	24	1.8	6.2	295	12.2	315
GITA	1999	2	26	1999	2	28	1.3	6.5	285	6.0	331
IFO	2000	3	11	2000	3	18	1.6	9.3	265	7.7	1/
OMA	2001	2	18	2001	2	22	1.6	9.0	255	5.5	306
TRINA	2001	11	30	2001	12	3	1.4	8.3	275	8.0	317
DOVI	2003	2	4	2003	2	11	1.1	7.1	145	5.0	89
JUDY	2004	12	22	2004	12	27	2.8	7.8	275	12.0	279
OLAF	2005	2	13	2005	2	20	2.2	8.1	275	13.2	236
NANCY	2005	2	11	2005	2	17	1.7	13.3	285	7.3	358
PERCY	2005	2	24	2005	3	5	2.2	11.3	245	6.9	260
RAE	2005	3	4	2005	3	6	1.8	10.2	255	6.9	260
ZITA	2007	1	21	2007	1	27	2.9	11.9	285	10.7	6
JONI	2009	3	10	2009	3	14	1.9	9.9	265	4.7	107
KEN	2009	3	16	2009	3	20	1.4	9.5	265	4.3	89
NISHA	2010	1	27	2010	1	31	1.8	7.8	175	6.6	131
OLI DAT	2010	1	30 6	2010	2	7	5.3	12.3	275	22.0	343
SARAH	2010	2	21	2010	3	4	1.5	5.7	305	8.4	314
ZAKA	2011	2	3	2011	2	8	1.4	7.1	145	9.3	81
GARRY	2013	1	18	2013	1	28	1.9	11.3	285	11.1	23
HALEY	2013	2	8	2013	2	14	2.5	9.4	275	9.4	316
NIKO	2014	3	18 20	2014	3 1	20 25	1.1	6.2 8.5	135	9.6	93 271
YALO	2016	2	23	2016	2	26	2.8	10.1	275	11.0	347
BART	2017	2	20	2017	2	22	1.5	9.7	265	1.8	345

	CYCLONES HISTORIQUES MODELISES				Paramètres d	l'états de mer	Vent au point M10				
	(DATE DEBUT	-		DATE FIN		(Corresponda	ant à la valeur	max du Hm0)	(Correspondant	au max du Hm0)
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)
KIM	1976	12	9	1976	12	13	2.2	7.7	265	7.9	297
TESSA	1977 1977	4	16 5	1977	4	23	3.0	11.0	275	7.6	302 182
ANNE	1977	12	23	1977	12	29	0.6	4.9	345	1.8	209
CHARLES	1978	2	13	1978	3	1	2.4	10.8	265	6.2	319
DIANA	1978	2	16	1978	2	22	4.4	10.7	285	14.3	7
OFA	1979	12	9	1979	12	15	2.2	10.1	255	8.8	347
DIOLA	1980	11	27	1980	11	30	1.9	5.4	155	9.4	2291
DAMAN	1981	2	20	1981	2	24	2.1	11.1	275	11.7	107
TAHMAR	1981	3	9	1981	3	13	5.7	10.0	315	20.9	317
FRAN	1981	3	20	1981	3	23	3.3	8.2	325	15.4	332
NISHA:ORAMA	1982	2	20	1982	2	28	2.5	7.6	165	10.5	28
PREMA	1983	2	25	1983	3	2	2.5	8.8	325	9.0	308
REWA	1983	3	7	1983	3	16	4.8	12.4	335	20.8	104
TOMASI	1983	3	27	1983	4	3	1.3	6.8	165	10.4	100
VEENA	1983	4	7	1983	4	14	4.3	9.1	145	17.9	205
FREDA	1985	1	24	1985	1	30	2.3	8.2	325	1.9	343
IMA	1986	2	6	1986	2	14	5.7	10.0	265	18.0	288
SALLY	1986	12	27	1987	1	5	2.9	10.8	255	8.9	317
TUSI	1987	1	15	1987	1	20	1.7	7.6	355	12.7	39
	1987	2	27	1987	3	7	2.4	10.0	245	2.4	20
ZUMAN	1987	4	19	1987	4	26	0.8	6.7	175	4.2	65
CILLA	1988	2	28	1988	3	3	4.0	10.7	275	13.8	330
JUDY	1989	2	23	1989	2	27	2.8	8.3	275	9.9	332
PENI	1990	2	12	1990	2	17	4.3	10.9	315	15.1	350
SINA VAI	1990	12	24	1990	12	4	2.1	10.3	265	4.0	309
WASA	1991	12	5	1991	12	13	6.3	12.4	325	18.4	3
NOT NAMED	1992	1	16	1992	1	18	1.7	7.6	325	6.6	344
CLIFF	1992	2	4	1992	2	11	1.3	6.4	155	8.1	128
GENE	1992	3	13	1992	3	19	1.6	12.2	285	7.7	27
NOT NAMED	1993	1	1	1993	1	3	2.1	10.5	265	7.9 8.9	3
NOT NAMED	1993	1	10	1993	1	14	3.9	10.7	325	15.3	344
NISHA	1993	2	11	1993	2	16	3.3	11.9	255	6.6	300
WILLIAM	1994	12	30	1995	1	3	3.9	10.5	265	15.2	327
NOT NAMED	1997	2	21	1997	2	24	1.3	6.2	335	9.8 8.7	1
MARTIN	1997	10	28	1997	11	4	5.6	13.2	285	15.3	333
OSEA	1997	11	21	1997	11	27	5.2	10.9	285	15.6	333
PAM	1997	12	2	1997	12	10	2.3	11.2	265	3.7	5
VELI	1998	1	31	1998	2	4	2.8	7.7	195	11.4	249
	1998	4	20	1998	4	4 26	1./	7.0	315	13.2	102
CORA	1998	12	22	1998	12	28	1.3	5.4	335	9.2	351
NOT NAMED	1998	12	21	1998	12	24	2.1	6.2	315	12.2	314
GITA	1999	2	26	1999	2	28	1.5	6.4	285	6.0	330
HALI	2000	3	11	2000	3	18	1.7	9.2	265	7.7	16
OMA	2000	2	18	2000	2	22	1.6	8.9	255	5.6	304
TRINA	2001	11	30	2001	12	3	1.5	8.1	275	8.1	317
DOVI	2003	2	4	2003	2	11	1.4	10.1	345	7.7	18
JUDY	2004	12	22	2004	12	27	3.0	7.7	275	11.9	279
	2005	2	13	2005	2	20	2.2	8.3	275	8.9	300
NANCY	2005	2	11	2005	2	17	1.7	12.3	285	6.9	355
PERCY	2005	2	24	2005	3	5	2.2	11.3	245	6.8	261
RAE	2005	3	4	2005	3	6	1.8	10.2	255	6.8	261
	2007	1	21	2007	1	2/	3.3	11.9	285	11.0	12
JONI	2009	3	10	2009	3	14	2.1	9.6	265	4.7	107
KEN	2009	3	16	2009	3	20	1.6	8.1	275	5.8	89
NISHA	2010	1	27	2010	1	31	2.1	8.0	285	8.7	273
OLI	2010	1	30	2010	2	7	7.2	12.1	325	21.5	347
PAT SADAU	2010	2	6 21	2010	2	12	1.2	9.8	285	8.2	50
ZAKA	2011	2	3	2011	2	8	1.0	7.3	145	9.2	81
GARRY	2013	1	18	2013	1	28	2.2	11.3	285	10.9	24
HALEY	2013	2	8	2013	2	14	2.8	9.1	265	9.4	315
MIKE	2014	3	18	2014	3	20	1.1	12.5	285	9.2	52
YALO	2015	1	20	2015	1 2	25	3.5	8.4 0.7	265	9.8	2/1
BART	2017	2	20	2017	2	22	1.6	9.6	265	1.6	344

	CHO			ODELIGE			Dara mètres d'états de mos au point T01 Vent au point T01					
	Cru		RIQUES IV	ODELISES			Correspond	d'états de mei	max du HmO)	Vent au point T01		
NOM					MOIS		(Correspond	To (c)	Dim (° /N)	(Correspondant	au max du HmU)	
KIM	1976	12	9	1976	12	13	2.0	8.3	265	8.1	297	
ROBERT	1977	4	16	1977	4	23	2.8	11.3	275	8.0	305	
TESSA	1977	12	5	1977	12	11	1.2	6.3	125	5.1	177	
	1977	12	23	1977	12	29	0.4	6.2 10.5	285	3.0	107	
DIANA	1978	2	16	1978	2	22	3.1	10.1	285	13.8	356	
OFA	1979	12	9	1979	12	15	2.1	10.2	255	8.7	350	
TIA	1980	3	21	1980	3	27	1.6	7.3	145	9.2	296	
DIOLA	1980	11	27	1980	11	30	2.1	8.4	145	11.3	105	
TAHMAR	1981	2	9	1981	3	13	5.2	9.9	275	21.5	325	
FRAN	1981	3	20	1981	3	23	2.5	7.8	335	14.2	336	
LISA	1982	12	10	1982	12	16	2.7	10.1	255	10.1	329	
NISHA:ORAMA	1983	2	20	1983	2	28	2.8	8.0	165	11.1	192	
REWA	1983	2	7	1983	3	16	2.1	8.4	335	21.3	309	
TOMASI	1983	3	27	1983	4	3	1.5	6.5	145	10.6	101	
VEENA	1983	4	7	1983	4	14	5.3	9.4	125	21.1	162	
ERIC	1985	1	12	1985	1	20	1.4	9.9	245	1.3	328	
FREDA	1985	1	24	1985	1	30	1.6	7.7	335	9.6	348	
SALLY	1986	12	27	1987	1	5	2.7	10.2	205	8.6	316	
TUSI	1987	1	15	1987	1	20	1.3	7.6	155	4.1	111	
WINI	1987	2	27	1987	3	7	2.2	10.3	245	2.1	19	
NOT NAMED	1987	2	28	1987	3	2	1.5	11.2	285	8.1	34	
ZUMAN	1987	4	19	1987	4	26	0.8	6.9 11.0	185	5.5	28	
JUDY	1989	2	23	1989	2	27	2.4	10.3	255	5.5	344	
PENI	1990	2	12	1990	2	17	3.6	13.0	285	14.5	349	
SINA	1990	11	24	1990	12	4	2.1	10.5	255	3.6	313	
VAL	1991	12	4	1991	12	13	2.7	6.8	285	14.1	266	
NOT NAMED	1991	12	16	1991	12	15	4.9	7.6	285	19.2	355	
CLIFF	1992	2	4	1992	2	11	1.4	6.4	135	8.7	128	
GENE	1992	3	13	1992	3	19	1.5	12.5	285	7.0	31	
HETTIE	1992	3	23	1992	3	29	1.9	6.8	145	8.2	278	
NOT NAMED	1993	1	1	1993	1	3	2.3	10.7	265	8.9	354	
NISHA	1993	2	10	1993	2	14	3.2	10.0	255	6.8	303	
WILLIAM	1994	12	30	1995	1	3	3.4	11.1	265	12.4	321	
NOT NAMED	1997	2	21	1997	2	24	0.9	6.3	125	4.5	90	
KELLI	1997	6	9	1997	6	17	1.8	7.0	215	10.1	175	
OSFA	1997	10	20	1997	11	27	4.9	10.2	285	17.2	343	
PAM	1997	12	2	1997	12	10	2.2	11.3	265	4.2	4	
VELI	1998	1	31	1998	2	4	2.8	8.0	175	11.6	249	
WES	1998	1	31	1998	2	4	1.9	7.1	145	12.3	99	
CORA	1998	4	20	1998	4 12	28	2.1	8.4	135	10.7	70 72	
NOT NAMED	1998	12	21	1998	12	24	2.0	6.1	295	12.1	318	
GITA	1999	2	26	1999	2	28	1.3	6.4	285	8.2	324	
HALI	1999	3	11	1999	3	18	1.8	8.8	265	7.0	18	
LEO	2000	3	4	2000	3	8	1.0	6.7	145	8.2	26 313	
TRINA	2001	11	30	2001	12	3	1.0	8.3	255	7.5	318	
DOVI	2003	2	4	2003	2	11	1.2	7.0	145	4.8	86	
JUDY	2004	12	22	2004	12	27	2.8	7.9	265	12.1	280	
MEENA	2005	2	2	2005	2	7	2.1	8.4	285	9.9	299	
NANCY	2005	2	15	2005	2	17	2.3	8.U 13.4	285	7.3	2/1	
PERCY	2005	2	24	2005	3	5	2.3	11.4	245	7.0	258	
RAE	2005	3	4	2005	3	6	1.9	10.0	255	5.7	232	
ARTHUR	2007	1	21	2007	1	27	2.9	11.3	285	9.3	14	
LONI	2007	1	21	2007	1	24 14	2.5	10.6	285	10.1	344	
KEN	2009	3	16	2009	3	20	1.5	9.6	255	4.1	90	
NISHA	2010	1	27	2010	1	31	1.9	7.7	175	6.7	132	
ОU	2010	1	30	2010	2	7	5.8	12.2	285	21.6	348	
PAT	2010	2	6	2010	2	12	1.2	9.8	265	7.6	81	
5ΑΚΑΗ 7ΔΚΔ	2010	2	3	2010	2	4 8	1.5	6.3 7.0	335 145	9.6	322 87	
GARRY	2013	1	18	2013	1	28	2.1	11.2	285	10.4	24	
HALEY	2013	2	8	2013	2	14	2.6	9.6	265	9.5	318	
MIKE	2014	3	18	2014	3	20	1.2	12.6	285	8.9	54	
NIKO YALO	2015	1	20	2015	1	25	3.3	8.5	275	12.3	266	
BART	2017	2	20	2017	2	22	1.5	9.7	265	2.1	347	

	CYCLONES HISTORIQUES MODELISES							d'états de me	Vent au point T03		
		DATE DEBUT	г		DATE FIN		(Corresponda	ant à la valeur	max du Hm0)	(Correspondant au max du Hm0)	
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)
KIM	1976	12	9	1976	12	13	1.8	8.4	265	8.0	298
ROBERT	1977	4	16	1977	4	23	2.3	11.4	265	7.7	305
TESSA	1977	12	5	1977	12	11	0.8	5.8	175	5.1	179
CHARIES	1977	2	13	1977	3	1	0.4	4.7	335	1.6	346
DIANA	1978	2	16	1978	2	22	2.9	9.9	265	12.7	2
OFA	1979	12	9	1979	12	15	2.0	10.3	255	8.7	349
TIA	1980	3	21	1980	3	27	1.3	5.1	335	9.5	305
DIOLA	1980	11	27	1980	11	30	1.7	6.3	205	9.5	229
DAMAN	1981	2	20	1981	2	24	1.4	11.2	265	11.5	108
TAHMAR	1981	3	9	1981	3	13	4.7	9.5	335	21.3	325
FRAN	1981	3	20	1981	3	23	2.5	7.7	335	14.3	335
NISHA:ORAMA	1983	2	20	1983	2	28	2.7	5.5 7 1	185	10.9	187
PREMA	1983	2	25	1983	3	2	2.1	8.6	325	10.0	309
REWA	1983	3	7	1983	3	16	3.7	12.5	335	19.5	96
TOMASI	1983	3	27	1983	4	3	0.9	6.9	175	10.6	101
VEENA	1983	4	7	1983	4	14	3.5	7.8	185	20.8	240
ERIC	1985	1	12	1985	1	20	1.3	9.9	245	1.1	331
FREDA	1985	1	24	1985	1	30	1.9	7.8	335	9.9	347
	1986	12	27	1987	1	14	2.1	10.5	265	18.4	200
TUSI	1987	1	15	1987	1	20	1.5	7.5	345	11.8	38
WINI	1987	2	27	1987	3	7	2.1	10.8	245	2.0	21
NOT NAMED	1987	2	28	1987	3	2	1.0	12.4	275	7.8	23
ZUMAN	1987	4	19	1987	4	26	0.8	6.8	185	5.0	26
CILLA	1988	2	28	1988	3	3	3.1	11.3	265	13.7	331
JUDY	1989	2	23	1989	2	27	2.3	10.4	245	5.5	343
PENI	1990	2	12	1990	2	17	3.1	9.0	335	14.4	350
VAL	1991	17	24	1991	12	13	2.0	10.5	265	3.5	309
WASA	1991	12	5	1991	12	13	4.5	11.2	335	18.6	354
NOT NAMED	1992	1	16	1992	1	18	1.3	7.6	335	7.0	3
CLIFF	1992	2	4	1992	2	11	1.0	6.2	175	8.5	128
GENE	1992	3	13	1992	3	19	1.1	9.5	265	6.1	20
HETTIE	1992	3	23	1992	3	29	1.7	6.6	265	7.6	275
NOT NAMED	1993	1	1	1993	1	3	2.0	10.9	265	8.4	355
	1993	1	10	1993	1	14	3.0	10.0	325	14.9	347
WILLIAM	1994	12	30	1995	1	3	3.0	11.0	265	13.4	373
NOT NAMED	1997	2	21	1997	2	24	1.0	5.7	335	8.2	5
KELLI	1997	6	9	1997	6	17	1.7	7.4	205	8.1	184
MARTIN	1997	10	28	1997	11	4	4.0	10.3	335	16.5	342
OSEA	1997	11	21	1997	11	27	4.0	10.1	265	16.9	319
PAM	1997	12	2	1997	12	10	1.9	11.5	265	4.3	2
VELI	1998	1	31	1998	2	4	2.4	7.6	195	11.6	250
	1998	4	20	1998	4	26	1.2	7.1 10.1	1/5	12.8	98
CORA	1998	12	22	1998	12	28	1.1	5.3	335	8.2	357
NOT NAMED	1998	12	21	1998	12	24	1.8	5.8	335	12.3	319
GITA	1999	2	26	1999	2	28	1.1	6.2	265	8.2	323
HALI	1999	3	11	1999	3	18	1.4	9.Z	265	7.0	17
LEO	2000	3	4	2000	3	8	0.7	4.4	355	7.2	9
UMA	2001	2	18	2001	2	22	1.5	9.3	255	4.8	310
DOVI	2001	7	30	2001	12	11	1.5	8.5	265	7.3	318
JUDY	2003	12	22	2003	12	27	2.4	7.7	265	12.0	281
MEENA	2005	2	2	2005	2	7	1.8	6.7	355	12.2	348
OLAF	2005	2	13	2005	2	20	2.1	6.2	265	13.6	276
NANCY	2005	2	11	2005	2	17	1.2	12.4	275	6.6	355
PERCY	2005	2	24	2005	3	5	2.1	11.5	245	6.5	261
RAE	2005	3	4	2005	3	6	1.7	10.1	255	5.5	234
ARTHUR	2007	1	21	2007	1	27	2.3	11.2	275	9.3	16
	2007	3	10	2007	3	14	2.2	9.2	325	5.8	344 105
KEN	2009	3	16	2009	3	20	1.0	9.9	255	4.1	91
NISHA	2010	1	27	2010	1	31	1.7	7.9	175	7.1	125
OLI	2010	1	30	2010	2	7	5.6	11.4	335	21.2	346
PAT	2010	2	6	2010	2	12	0.8	9.9	265	7.6	82
SARAH	2010	2	21	2010	3	4	1.3	6.1	335	8.3	321
ZAKA	2011	2	3	2011	2	8	0.7	7.7	165	9.5	81
GARRY	2013	1	18	2013	1	28	1.7	11.7	275	10.3	24
HALEY	2013	2	5 12	2013	2	14 20	2.3	9.6	265	8.9	314
NIKO	2015	1	20	2015	1	25	2.9	8.4	275	9.3	277
YALO	2016	2	23	2016	2	26	2.7	9.9	265	10.6	346
BART	2017	2	20	2017	2	22	1.4	9.9	265	1.9	342

	CYCL	ONES HISTO	RIQUESM	ODELISES			Paramètres	d'états de mer	au point T05	Vent au point T05	
NOM	[DATE DEBUT			DATE FIN		(Correspond	ant à la valeur	max du Hm0)	(Correspondant	au max du Hm0)
KIM	1976	12 12	JOUR	1976	12	JOUR	Hm0 (m)	Tp (s)	Dirp ("/N)	Ws (m/s)	Wd (*/N)
ROBERT	1977	4	16	1977	4	23	2.1	7.6	335	8.9	9
TESSA	1977	12	5	1977	12	11	1.0	6.9	65	6.7	135
ANNE	1977	12	23	1977	12	29	0.6	4.5	345	1.6	346
CHARLES	1978	2	13	1978	3	1	1.6	7.0	325	6.6	311
OFA	1978	12	16	1978	12	15	4.2	10.2	315	13.8	10
TIA	1980	3	21	1980	3	27	1.3	5.1	325	10.2	313
DIOLA	1980	11	27	1980	11	30	1.5	6.2	205	9.5	229
DAMAN	1981	2	20	1981	2	24	1.6	10.4	345	8.9	77
TAHMAR	1981	3	9	1981	3	13	5.2	9.9	315	21.1	325
LISA	1982	12	10	1982	12	16	4.3	9.4	325	14.5	28
NISHA:ORAMA	1983	2	20	1983	2	28	2.4	12.1	65	10.9	178
PREMA	1983	2	25	1983	3	2	2.5	9.3	315	10.6	326
REWA	1983	3	7	1983	3	16	5.3	11.9	345	21.6	106
TOMASI	1983	3	27	1983	4	3	1.2	5.9	335	6.6	359
VEENA	1983	4	7	1983	4	14	5.2	12.6	55	20.1	154
FREDA	1985	1	24	1985	1	30	7.4	7.8	375	1.5	346
IMA	1986	2	6	1986	2	14	4.5	10.1	235	18.1	288
SALLY	1986	12	27	1987	1	5	2.0	7.6	325	8.8	318
TUSI	1987	1	15	1987	1	20	2.2	7.0	345	11.9	38
WINI	1987	2	27	1987	3	7	1.7	11.9	235	1.8	26
NOT NAMED	1987	2	28	1987	3	2	1.4	5.4	25	9.4	32
ZUMAN	1987	4	19	1987	4	26	0.9	5.1	45	5.0	26
	1988	2	28	1988	3	3	2.8	7.4	325	13.6	331
PENI	1990	2	12	1990	2	17	3.9	7.8	355	14.8	354
SINA	1990	11	24	1990	12	4	1.2	10.9	235	3.5	307
VAL	1991	12	4	1991	12	13	2.6	7.5	315	14.6	262
WASA	1991	12	5	1991	12	13	6.4	12.6	315	16.6	33
NOT NAMED	1992	1	16	1992	1	18	1.9	7.5	315	7.2	10
CLIFF	1992	2	4	1992	2	11	0.8	5.8	185	8.2	128
GENE	1992	3	13	1992	3	19	1.5	6.2	345	6.6	26
NOT NAMED	1993	1	1	1993	1	3	1.0	6.7	23	9.7	300
NOT NAMED	1993	1	10	1993	1	14	3.9	10.9	315	14.8	346
NISHA	1993	2	11	1993	2	16	2.0	12.9	245	6.4	298
WILLIAM	1994	12	30	1995	1	3	3.2	8.5	325	12.5	276
NOT NAMED	1997	2	21	1997	2	24	1.3	5.7	335	8.7	4
KELLI	1997	6	9	1997	6	17	1.6	7.3	215	10.3	174
MARTIN	1997	10	28	1997	11	4	4.6	9.9	325	16.3	340
DAM	1997	12	21	1997	12	27	4.3	11.0	315	14.2	357
VELI	1998	1	31	1998	2	4	2.4	7.8	195	11.6	251
WES	1998	1	31	1998	2	4	1.3	5.9	65	13.1	98
ALAN	1998	4	20	1998	4	26	3.2	10.4	315	11.8	50
CO RA	1998	12	22	1998	12	28	1.3	5.3	35	9.3	35
NOT NAMED	1998	12	21	1998	12	24	2.0	6.2	315	12.3	319
GITA	1999	2	26	1999	2	28	1.2	5.8	315	8.2	323
IEO	2000	3	1	2000	3	20	1.4	6.Z	545	8.4	33
OMA	2000	2	18	2001	2	22	1.1	10.7	235	5.0	292
TRINA	2001	11	30	2001	12	3	1.5	6.4	25	7.5	344
DOVI	2003	2	4	2003	2	11	1.9	6.3	45	11.4	45
JUDY	2004	12	22	2004	12	27	2.2	7.7	235	12.0	281
MEENA	2005	2	2	2005	2	7	2.4	7.0	345	12.3	349
OLAF	2005	2	13	2005	2	20	2.0	6.2	305	14.1	279
DEPCY	2005	2	11	2005	2	1/	1.4	5.6	345	6.6	355
RAF	2005	3	4	2005	3	6	1.5	10.8	235	5.7	205
ARTHUR	2007	1	21	2007	1	27	2.3	7.7	325	9.7	9
ZITA	2007	1	21	2007	1	24	3.0	9.4	315	9.7	350
JONI	2009	3	10	2009	3	14	1.8	7.1	325	7.2	344
KEN	2009	3	16	2009	3	20	1.3	6.2	315	7.1	340
NISHA	2010	1	27	2010	1	31	1.8	8.2	325	5.3	129
OLI	2010	1	30	2010	2	7	6.7	11.9	325	19.7	354
	2010	2	21	2010	2	4	1.5	5./	55	8.4	58 310
ZAKA	2011	2	3	2011	2	8	1.5	5.4	65	10.8	97
GARRY	2013	1	18	2013	1	28	2.1	6.3	15	11.6	22
HALEY	2013	2	8	2013	2	14	2.0	7.5	315	8.8	314
MIKE	2014	3	18	2014	3	20	1.4	5.4	45	10.2	42
NIKO	2015	1	20	2015	1	25	2.9	10.1	55	10.8	113
YALO	2016	2	23	2016	2	26	3.3	8.4	25	14.7	17
BART	2017	2	20	2017	2	22	1.2	6.0	325	5.9	345

CYCLONES HISTORIQUES MODELISES							Paramètres	d'états de me	Vent au point T07		
		DATE DEBUT	г		DATE FIN		(Correspond	ant à la valeur	· max du Hm0)	(Correspondant au max du Hm0)	
NOM	ANNEE	MOIS	JOUR	ANNEE	MOIS	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)
KIM	1976	12	9	1976	12	13	1.5	6.7	285	7.8	298
ROBERT	1977	4	16	1977	4	23	2.3	10.7	285	7.6	318
ANNE	19//	12	5	1977	12	11 79	1.0	6.3	15	4.3	102
CHARLES	1978	2	13	1978	3	1	1.7	4.5	325	6.1	345
DIANA	1978	2	16	1978	2	22	4.5	10.8	305	13.6	10
OFA	1979	12	9	1979	12	15	1.7	6.8	315	7.6	344
TIA	1980	3	21	1980	3	27	1.3	5.1	325	10.1	313
DIOLA	1980	11	27	1980	11	30	1.0	5.6	235	9.6	230
TAHMAR	1981	3	9	1981	3	13	5.6	10.4	315	21.0	328
FRAN	1981	3	20	1981	3	23	3.0	8.2	315	13.9	336
LISA	1982	12	10	1982	12	16	4.3	9.5	315	14.9	28
NISHA:ORAMA	1983	2	20	1983	2	28	2.6	12.2	65	10.3	183
PREMA	1983	2	25	1983	3	2	2.5	9.7	315	10.5	328
TOMASI	1983	3	27	1983	3	3	5.4	59	335	21.8	104
VEENA	1983	4	7	1983	4	14	5.4	12.6	55	21.5	151
ERIC	1985	1	12	1985	1	20	0.9	4.9	35	6.5	355
FREDA	1985	1	24	1985	1	30	2.4	7.8	325	9.8	346
IMA	1986	2	6	1986	2	14	4.5	9.4	285	18.0	289
SALLY	1986	12	27	1987	1	5	2.2	7.9	325	8.7	318
TUSI	1987	1	15	1987	1	20	2.2	7.0	5	11.6	38
NOT NAMED	1987	2	27	1987	3	2	1.7	7.5 10.8	285	8.1	30
ZUMAN	1987	4	19	1987	4	26	0.8	5.0	15	4.2	79
CILLA	1988	2	28	1988	3	3	3.2	8.8	285	12.4	328
JUDY	1989	2	23	1989	2	27	2.4	7.8	315	9.7	334
PENI	1990	2	12	1990	2	17	4.1	9.8	315	14.5	355
SINA	1990	11	24	1990	12	4	1.1	10.5	245	3.2	306
VAL	1991	12	4	1991	12	13	2.7	/.5	315	15.2	261
NOT NAMED	1992	1	16	1992	1	18	2.0	7.4	315	9.0	38
CLIFF	1992	2	4	1992	2	11	0.7	6.2	75	4.3	145
GENE	1992	3	13	1992	3	19	1.7	10.9	285	6.4	26
HETTIE	1992	3	23	1992	3	29	1.9	8.6	25	6.2	204
NOT NAMED	1993	1	1	1993	1	3	1.7	7.2	325	7.4	355
NOT NAMED	1993	1	10	1993	1	14	3.9	11.0	315	14.6	346
MISHA WILLAM	1993	12	30	1995	2	3	2.1	7.8	285	11.8	302
NOT NAMED	1997	2	21	1997	2	24	1.2	5.6	325	8.5	4
KELLI	1997	6	9	1997	6	17	1.2	6.2	285	5.2	232
MARTIN	1997	10	28	1997	11	4	5.1	11.7	285	16.5	342
OSEA	1997	11	21	1997	11	27	4.5	11.2	315	13.8	357
PAM	1997	12	2	1997	12	10	1.9	7.3	325	6.8	332
VELI W/ES	1998	1	31	1998	2	4	2.1	8.4	305	11.6	251
ALAN	1998	4	20	1998	4	26	33	10.4	315	11.7	49
CORA	1998	12	22	1998	12	28	1.3	5.3	35	9.4	36
NOT NAMED	1998	12	21	1998	12	24	2.1	6.2	315	12.3	321
GITA	1999	2	26	1999	2	28	1.3	5.9	315	8.2	323
HALI	1999	3	11	1999	3	18	1.5	6.8	325	7.7	16
OMA	2000	3	4	2000	3	8	0.9	4.6	45	7.0	11
TRINA	2001	11	30	2001	12	3	1.0	6.5	25	7.3	305
DOVI	2003	2	4	2003	2	11	1.9	6.4	45	11.4	45
JUDY	2004	12	22	2004	12	27	2.1	7.5	315	12.0	281
MEENA	2005	2	2	2005	2	7	2.4	7.0	5	12.2	350
OLAF	2005	2	13	2005	2	20	2.3	6.4	285	14.5	281
NANCY	2005	2	11	2005	2	17	1.6	11.5	285	6.6	355
PERCT	2005	2	24 4	2005	3	5	1.5	5.4	245	5.0	204
ARTHUR	2007	1	21	2007	1	27	2.7	8.3	285	9.2	9
ZITA	2007	1	21	2007	1	24	3.2	10.0	315	9.7	351
JONI	2009	3	10	2009	3	14	1.9	7.4	315	7.2	344
KEN	2009	3	16	2009	3	20	1.4	6.5	325	5.7	63
NISHA	2010	1	27	2010	1	31	1.7	7.7	285	6.3	280
	2010	1	30 2	2010	2	7	7.0	12.0	325	19.2	354
	2010	2	21	2010	2	12	1.3	5.8	55	8.3	59
ZAKA	2011	2	3	2011	2	8	1.2	5.7	75	10.9	92
GARRY	2013	1	18	2013	1	28	2.3	6.3	15	11.8	22
HALEY	2013	2	8	2013	2	14	2.2	7.9	285	9.3	317
MIKE	2014	3	18	2014	3	20	1.4	5.6	55	10.1	42
NIKO	2015	1	20	2015	1	25	3.1	10.1	65	11.7	114
YALO PART	2016	2	23	2016	2	26	3.4	8.4	15	15.2	19
DAKI	201/	4	20	201/	4	22	1.5	o. 2	212	5.9	345

	CYCLONES HISTORIQUES MODELISES							d'états de mer	Vent au point T09		
NOM		DATE DEBUT			DATE FIN		(Corresponda	ant à la valeur	max du Hm0)	(Correspondant)	au max du HmO)
KIM	1976	12	JOUR	1976	12	JOUR	Hm0 (m)	Tp (s)	Dirp (°/N)	Ws (m/s)	Wd (°/N)
ROBERT	1977	4	16	1977	4	23	2.5	11.0	275	7.6	318
TESSA	1977	12	5	1977	12	11	1.2	7.0	85	4.8	150
ANNE	1977	12	23	1977	12	29	0.7	4.5	5	1.5	345
CHARLES	1978	2	13	1978	3	1	1.9	7.1	275	6.1	323
DIANA	1978	2	16	1978	2	22	4.6	10.8	305	13.5	10
TIA	1979	3	21	1979	3	27	1.0	7.0	315	7.0	344
DIOLA	1980	11	27	1980	11	30	1.1	4.7	95	11.1	108
DAMAN	1981	2	20	1981	2	24	1.8	10.9	275	11.4	108
TAHMAR	1981	3	9	1981	3	13	5.7	10.0	315	21.0	329
FRAN	1981	3	20	1981	3	23	2.9	8.2	315	13.7	336
	1982	12	10	1982	12	16	4.4	9.4	315	14.8	28
PREMA	1983	2	25	1983	3	20	2.7	9.7	315	10.5	334
REWA	1983	3	7	1983	3	16	6.0	10.2	75	24.3	111
TOMASI	1983	3	27	1983	4	3	1.3	5.9	325	6.6	359
VEENA	1983	4	7	1983	4	14	6.6	12.4	55	22.8	150
ERIC	1985	1	12	1985	1	20	0.9	4.9	35	6.8	355
FREDA	1985	1	24	1985	1	30	2.4	7.7	325	9.7	346
	1986	12	5 27	1986	2	14	4./	9.4	285	17.9	290
TUSI	1987	1	15	1987	1	20	2.5	7.0	5	11.5	37
WINI	1987	2	27	1987	3	7	1.8	7.6	275	5.8	298
NOT NAMED	1987	2	28	1987	3	2	1.6	10.9	285	8.0	36
ZUMAN	1987	4	19	1987	4	26	0.8	5.0	15	4.1	80
CILLA	1988	2	28	1988	3	3	3.4	9.8	275	12.5	329
JUDY	1989	2	23	1989	2	27	2.5	/.8	315	9.6	334
SINA	1990	11	24	1990	12	4	4.1	10.7	275	3.7	304
VAL	1991	12	4	1991	12	13	2.8	7.6	285	15.3	261
WASA	1991	12	5	1991	12	13	6.5	13.0	305	15.6	30
NOT NAMED	1992	1	16	1992	1	18	2.1	7.4	315	9.3	37
CLIFF	1992	2	4	1992	2	11	0.9	6.2	85	4.3	145
GENE	1992	3	13	1992	3	19	1.8	11.1	295	6.4	26
NOT NAMED	1993	1	1	1993	1	3	1.8	0.4 7.8	25	7.2	353
NOT NAMED	1993	1	10	1993	1	14	3.9	11.0	315	14.4	347
NISHA	1993	2	11	1993	2	16	2.2	8.1	275	6.3	305
WILLIAM	1994	12	30	1995	1	3	3.6	8.9	315	12.1	293
NOT NAMED	1997	2	21	1997	2	24	1.2	5.2	325	8.3	4
KELLI	1997	10	9	1997	11	1/	1.3	6.0	275	5.2	265
OSFA	1997	10	20	1997	11	27	2.5	12.7	305	13.5	343
PAM	1997	12	2	1997	12	10	2.0	9.8	275	6.8	332
VELI	1998	1	31	1998	2	4	2.4	9.2	75	7.8	217
WES	1998	1	31	1998	2	4	1.8	6.7	95	13.1	96
ALAN	1998	4	20	1998	4	26	3.4	10.6	305	11.7	48
	1998	12	22	1998	12	28	1.4	5.3	35	9.5	36
GITA	1999	2	21	1999	2	24	1.4	5.9	315	87	322
HALI	1999	3	11	1999	3	18	1.7	6.4	95	7.0	16
LEO	2000	3	4	2000	3	8	1.0	4.8	95	8.9	105
OMA	2001	2	18	2001	2	22	1.1	6.2	275	5.5	308
TRINA	2001	11	30	2001	12	3	1.7	6.6	25	7.3	343
DOVI	2003	2	4	2003	2	11	2.0	6.4	45	11.3	44
MEENA	2004	2	22	2004	2	7	2.2	7.5	5	12.0	350
OLAF	2005	2	13	2005	2	20	2.5	6.6	285	14.7	282
NANCY	2005	2	11	2005	2	17	1.7	12.0	275	6.6	355
PERCY	2005	2	24	2005	3	5	1.4	10.9	245	5.4	264
RAE	2005	3	4	2005	3	6	1.2	5.4	5	7.0	340
	2007	1	21	2007	1	27	2.9	11.8	275	8.5	356
JONI	2009	3	10	2009	3	14	2.0	7.4	315	7.2	344
KEN	2009	3	16	2009	3	20	1.5	6.8	275	5.0	66
NISHA	2010	1	27	2010	1	31	1.8	8.0	275	6.4	281
OLI	2010	1	30	2010	2	7	7.0	12.0	315	18.9	354
PAT	2010	2	6	2010	2	12	1.5	5.8	75	8.4	69
5ARAH	2010	2	21	2010	3	4	1.5	6.3	315	7.5	321
GARRY	2013	1	18	2011	1	28	2.4	11.7	275	11.9	52 27
HALEY	2013	2	8	2013	2	14	2.3	8.3	275	9.2	317
MIKE	2014	3	18	2014	3	20	1.6	5.7	85	10.0	43
NIKO	2015	1	20	2015	1	25	3.7	10.0	65	12.6	117
YALO	2016	2	23	2016	2	26	3.4	8.4	5	15.4	20

Société anonyme au capital de 3 183 349 euros SIRET : 391 484 862 000 19 - RCS : NÎMES B 391 484 862 N° de TVA intracom : FR 35 391 484 862 000 19

1105, avenue Pierre Mendès-France BP 94001 - 30 001 Nîmes Cedex 5 FRANCE Tél. : +33 (0) 4 66 84 81 11 Fax : +33 (0) 4 66 87 51 09 e-mail : brli@brl.fr